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1.  INTRODUCTION  

In Bioinformatics, discovering patterns in a set of DNA sequences is an important problem with many 

implications in research.  Certain genes are responsible for the expression of other genes;  more specifically, 

these ‘short’ A,T,C,G strings are examples of regulatory motifs of which proteins known as transcription 

factors bind onto which ultimately influence the transcription of downstream genes[19].  Thus, given a 

sequence of DNA sequences for which the expression of other genes are present, we wish to discover the 

motifs in each sequence that are responsible for the expression of these genes.  We can define a simplified 

version of this problem as: 

“Given   DNA sequences of length   over the alphabet         , discover an  -character long motif that occurs 

in each sequence at least once.” 

This problem by itself is relatively simple to solve, and can be done so “quickly”[19].  However, most 

regulatory motifs are not exactly the same in every sequence – that is, certain positions in the motif may differ 

in each instance in a sequence, also known as a mutation.  Therefore, the simplified problem becomes: 

“Given   DNA sequences of length   over the alphabet          , discover an  -character long motif that is 

present with at most   differing mutations in each  sequence at least once.” 

This is known as the planted      -motif search (PMS) problem, which is much more difficult to solve.  In fact, 

this problem is closely related to a well-known difficult problem in computing science – the COMMON-

APPROXIMATE-SUBSTRING (CAS) problem – which is formally defined as follows: 

Instance: A set             of strings over an alphabet   such that       ,      , and positive 
integers   and   such that      , and      .   

Question:  Is there a string        such that each string       ,   is Hamming Distance     from some length-  
substring of  ? 
 
Clearly, the PMS problem is a specific case of the CAS problem, where            .  Unfortunately, both 

problems are shown to be NP-Hard[20].   However, certain optimizations can be done with the PMS problem 

since d is relatively small in practical applications; there are many algorithms which give an approximate 

solution to this problem (that is, it returns a motif which may or may not be correct) as well as algorithms 

which solve specific       instances exactly relatively efficiently such that these algorithms can be used in 

practice.  This literature survey intends to provide an overview of the different types of algorithms which 

provide solutions to the planted      -motif discovery problem. 

 

2.  BROAD OVERVIEW OF LITERATURE 

As previously mentioned, the planted      -motif search problem (PMS) is a difficult problem.  However, 

clearly the difficulty of the problem depends on different values of   and   – at a glance, an (10,1) instance of 

the problem seems to be much easier to solve than an (15,4) instance.  In fact, the (15,4) instance was the first 

challenging instance proposed by Pevzner and Sze[1], and several other instances – e.g. (14,4), (16,5), and 

(18,6) [2] – have been shown to be also challenging.   

The basis for the definition of these challenging instances relies on the expected number of random patterns 

which would occur in any particular sequence; these challenging instances are cases where this number is 

greater than 1[3].  Intuitively, this corresponds to a loss in accuracy where false motifs are frequently 
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considered due to noise.  Buhler and Tompa[2] describe that in actuality, there is a defined threshold for   for 

which it is unlikely that any algorithm can distinguish a planted motif from random noise past this 

threshold[3].  While algorithms in the literature successfully solve most general instances of the PMS 

problem, some earlier algorithms such as WINNOWER(2000)[4] fail at challenging instances  while others 

such as PROJECTION(2002) succeed[2]. 

The majority of algorithms which attempt to solve the PMS problem (and its particularly challenging 

instances) are approximation algorithms, while a significantly smaller set of algorithms such as PMS1, PMS2, 

PMSPrune[5], and MITRA attempt to solve the problem exactly.  A brief description of these two categories 

and an overview of different algorithms belonging to these categories will now be described. 

2.1  Approximation Algorithms 

Approximation algorithms return motifs with a likelihood of certainty that it is the ‘correct’ motif (e.g. correct 

in the artificial PMS problem implies the planted motif). One of the earliest papers uses expectation 

maximization (EM)[9], where the expected starting position of an  -long motif is found using an iterative 

approach which re-estimates and re-evaluates the motif position probabilistically until a threshold has been 

reached[10][11].  EM laid the foundations for which many other algorithms such as MEME[10],  

ProfileBranching[7], and PROJECTION[2] are based on.   

An early greedy algorithm by Stormo and Hartzell from 1989 is described in [12] which generates an initial 

score matrix containing each  -length candidate motif in the first sequence, and then greedily goes through 

subsequent sequences one at a time and updates the score matrix based on the ‘best choice’ that preserves 

information content between an entry in the matrix and a specific candidate.  Stormo builds upon this idea to 

form CONSENSUS[13] with Hertz[7] ten years later, which is shown to be efficient compared to other 

algorithms[7], but with less accuracy. 

PatternBranching, by Price, Ramabhadran, and Pevzner, is a “shamefully simple” yet effective and efficient 

algorithm which branches from sample strings to search the motif space[5].  It is formulated specifically to 

tackle the challenging instances proposed by Pevzner and Sze[5], and in that regard it is extremely effective, 

taking 3 seconds with a 99.7% success rate to solve the initial challenging problem from [1].  Although the 

original algorithm is not able to solve some challenging instances such as (15,5), a small improvement to the 

algorithm, coined ePatternBranching by Davila and Rajasekaran[16], allows the algorithm to handle much 

more difficult algorithms at the expense of generality.  Similarly, an improved voting algorithm, with 

projection, proposed by Leung and Chin[3] is able to solve the relatively long (40,15)-motif problem with 

over a 95% success rate.  

2.2  Exact Algorithms 

Also known as combinatorial algorithms, the amount of literature on exact algorithms with an emphasis on 

challenge problems is relatively little compared to that on heuristic-based algorithms most likely due to its 

impracticality as the problem is NP-Hard; the predominant algorithms are PMS1, PMS2, and its variants, by 

Rajasekaran et. al. [5][6], and MITRA, by Pevzner and Eskin[8].  PMS1 and PMS2[6] are relatively simple 

algorithms, which exhaustively generate all possible candidate motifs from each sequence and prunes them 

to return a consensus motif – these algorithms are also known as pattern-based algorithms[7].  PMS2 is 

known to solve challenging instances such as (15,4) but requires nearly 1GB of memory[5].  PMSi, PMSP, and 

PMSprune[5] build upon these algorithms to achieve better time complexity and space usage using 

techniques such as branch and bound.  MITRA[8] is another pattern-based algorithm and uses mismatch trees 

to prune the search space as an improvement to the WINNOWER algorithm; it solves challenging instances 

such as (15,4) quicker than PMS2 and requiring only one tenth of memory[6][8].  
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3.  KEY PAPERS 

Finding Composite Regulatory Patterns in DNA Sequences – Eskin and Pevzner (2002) 

An efficient exact algorithm for its time is proposed in Eskin and Pevzner’s 2002 paper[8], named MITRA 

(MIsmatch TRee Algorithm).  MITRA follows a pattern-based approach to solving the problem, sharing 

similarities with Rajasekaran’s PMS1/2 paper[6] in analyzing the      -neighbourhood of all    possible  -

mers, deemed the “Sample Driven Approach” (SDA) initially described by Waterman et. al in 1984[5].  

However, MITRA does one notable optimization:  it realizes that going through the      -neighbourhood of all 

 -mers is not optimal, since there are many  -mers that are just not frequent enough and should not be 

considered.  It discards these uninteresting  -mers through the use of a Mismatch Tree, a data structure which 

is similar to a suffix tree except that the children of a node all contain suffixes of its parent with up to   

mismatches.  It uses this Mismatch Tree in a branch and bound approach to split the space of all  -mers into 

subspaces based on the number of mismatches, only going through paths in the tree that it deems to be “not 

weak”, thus saving a lot of memory as it does not require the storage of all possible candidate  -mers. 

According to the paper’s results, MITRA is able to solve all of Pevzner and Sze’s[4] challenge problems with 

ease, a task that many other prior algorithms has failed.  Furthermore, MITRA is able to solve other instances 

that the authors deem to be more difficult than the challenge problems. Unfortunately, the authors do not 

rigorously define an upper bound for MITRA and its graph-based variant, so it is uncertain how well it may 

perform for other, non-preconceived instances, especially since solving the exact PMS problem is at best 

exponential.  

 

Exact Algorithms for Planted Motif Challenge Problems – Rajasekaran, Balla, Huang (2005) 

In their paper, Rajasekaran et. al. introduce two exact algorithms to solve the planted motif problem: PMS1 

and PMS2[6].  Their first algorithm, PMS1, is relatively simple; it goes through each single input sequence    

and lists all  -mers from    into a corresponding set   .  Then, for each  -mer from  , it generates the set of all 

possible  -length patterns with a hamming distance   away from the -mer and stores it into   .  Each    is 

then sorted in linear time using an integer sorting algorithm and merged together.  The motif that occurs in 

all    is the planted motif. 

Essentially, the algorithm exploits the idea that one  -mer in each sequence must be   distance away from the 

planted motif.  Thus, it goes through all candidate motifs for each sequence (the      -neighbourhood of each 

 -mer) and outputs the same candidate motif that shows up across all sequences, which ultimately 

corresponds to the planted motif. 

The authors claim a bound of      
 
 
     

 

 
 , where   is the number of input sequences, and   is the word 

length of the computer. This bound is understandable based on the algorithm presented, but the authors then 

quickly state that a secondary bound of         
 
 
 
 

    
 

 
  is “achievable”.  It’s not immediately clear how 

this is the case, as this secondary bound is stricter for problems when   is small. 

The authors then present a second algorithm, PMS2, which improves on PMS1 based on the following two 

observations: 
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1.)  Since the target motif occurs in each input sequence, all substrings must also occur in each input 

sequence.  This corresponds to       different  -mers for each input sequence which 

corresponds to the target motif. 

2.) These  -mers, in sequence, can be used to obtain the target  -mer. 

Like PMS1, two very complex bounds for PMS2 is shown as a theorem.  No explanation or proof for the bound 

is given, and it is very unclear how one can arrive at such a conclusion. 

The paper provides new insight as to how to efficiently explore the motif search space to find exact solutions 

to the PMS problem.  Again, however, attempting to solve this problem exactly is likely not that practical for 

all input as the problem is NP-Hard.  The authors show that PMS1 and PMS2 are much faster than MITRA for 

small   (e.g.   );  these results correlate with the independent implementation results shown in [14].  

However, unlike MITRA which was shown as being able to solve cases even when    , albeit slowly, 

Rajasekaran’s algorithms are unable to compute instances with higher      due to the algorithms’ high 

memory requirements.  This is quite a big deterrent for these algorithms since the set of applicable instances 

is so restricted.   Furthermore, even for applicable instances, computing challenge instances such as (15,4) 

requires orders of magnitude more time over other heuristic based approaches such as PatternBranching, 

which gives excellent results in practice. 

 

Finding Motifs Using Random Projections – Buhler, Tompa (2002) 

Buhler and Tompa introduce a fresh approach to solving the motif finding problem; their algorithm, 

PROJECTION, utilizes randomization to find motifs that have a high likelihood of being the planted motif.  It 

was quite effective for its time, besting GibbsDNA, WINNOWER, and SP-STAR for several challenging PMS 

instances.  

In PROJECTION, the user first chooses a value  , where       ideally, and     hash buckets are created, 

representing all possible  -mers.    independent trials are then performed;  in each trial, the algorithm 

chooses   random numbers from the set        .  The algorithm then goes through each  -mer in every input 

sequence, and each  -mer is projected (hashed) into one of the    buckets by using the   random numbers 

(chosen at the beginning of the trial) as positions in the  -mer;  an  -mer is hashed into the bucket represented 

by the concatenation of the   positions in the  -mer – for example, if we have the 5-mer ACGTA and positions 

{1, 3, 5} are randomly chosen initially, then ACGTA would hash to the AGA bucket.    

Thus, some of the    buckets will have more  -mers than others; the algorithm uses a set threshold   to figure 

out which buckets are ‘interesting’ – the  -mers in these interesting buckets are then refined to find the 

planted motif using Expectation Maximization[9].   

According to the paper’s results, PROJECTION performs similarly, if not better, than GibbsDNA, WINNOWER, 

and SP-STAR for cases where   is between 10 and 19 and   is between 2 and 6 – more importantly, it is able to 

solve the (14,4), (17,5), (19,6) difficult problems exceptionally better than these algorithms.  Unfortunately, 

while the algorithm’s effectiveness is shown in the results, its efficiency is not, as computing times are 

omitted altogether.  Furthermore, as mentioned by its authors, PROJECTION has problems with instances 

outside of these       ranges; later improvements by other authors[3][25] attempt to fix these problems.  

  



P A G E   6  
 

Finding subtle motifs by branching from sample strings – Price, Ramabhadran, Pevzner (2003)  

Pevzner, Price, and Ramabhadran introduce a simple pattern-based branching algorithm, PatternBranching 

alongside an equally simple profile-based branching algorithm, ProfileBranching in their seminal 2003 

paper[7]. Although said to be “shamefully simple” by its authors, it’s one of the fastest and most effective 

solutions to the PMS problem – Davila and Rajesekaran[16] describe PatternBranching as “one of the fastest 

non-exact algorithms and […] runs in a couple of seconds with an experimental success rate of near 100%”. 

Instead of exhaustively analyzing all  -mers in each sequence, the PatternBranching algorithm looks at the 

whole sample sequence as one concatenated input, and focuses only on    -mers that are deemed interesting.  

Initially, it creates an arbitrary candidate motif and chooses the first  -mer in the concatenated sequence as 

the ‘start’ of the branch.  Then, for   iterations, it chooses the next  -mer to look at based on a 

BestNeighbour() function – this function chooses an  -mer that differs from the current  -mer by exactly 1 

position and minimizes the total distances between the chosen  -mer and the overall sequence.   If at each 

iteration the current  -mer is a better choice than the current candidate motif – that is, it minimizes the total 

distance as discussed previously – the current candidate motif is updated as the current  -mer.   

The ProfileBranching algorithm uses the same approach as the PatternBranching algorithm, but with four 

notable changes listed by the authors: 

1.)  Each sample string is converted instead to a profile for the string using a method similar to that 

used in MEME’s [17]. 

2.) Change the scoring method to score profiles based on an entropy score. 

3.) Modify the branching method to account for profiles by modifying BestNeighbor’s criteria 

4.) Use the top-scoring profile as a seed in the EM algorithm, running until convergence. 

Both PatternBranching and ProfileBranching, as discussed before, are extremely effective algorithms, even 

for the (15,4) challenge problem.  PatternBranching is shown to be significantly faster than other algorithms 

such as PROJECTION, MITRA, and MULTIPROFILER while maintaining close to 100% accuracy.  However, the 

authors’ comparison method seems haphazard, as the other algorithms – aside from MULTIPROFILER – are 

run on significantly slower machines.  On more challenging problems, defined as instances with ‘dim’ planted 

motifs such as the (15,4) instance with sequences of length 2000 (instead of 600 originally), 

PatternBranching has over a 99% success rate while PROJECTION falls to 80%, taking only a “few minutes” 

compared to MULTIPROFILER which takes over an hour.  Again, however, the tests for PatternBranching are 

run on a 1.0GHz machine versus 500Mhz for MULTIPROFILER, which skews the results somewhat. 

ProfileBranching is shown to be roughly twice slower than CONSENSUS and GibbsDNA on the original 

challenge problem, but with a much greater degree of ‘success’ based on a performance coefficient of the 

resultant profile;  PatternBranching, is still roughly 27 times faster than ProfileBranching.  However, on 

instances deemed unsolvable for pattern-based algorithms – that is, instances where motifs differ in always 

the same two positions – ProfileBranching has a performance coefficient of 0.99 versus 0.1 for 

PatternBranching and 0.63 for MEME.  

PatternBranching has been shown to fail to solve more difficult problems[16], but a simple improvement to 

the algorithm to account for these problems is provided by Davila and Rajasekaran. 
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4.  FUTURE  TRENDS 

Since the planted      -motif search problem is NP-Hard, and reflected through the results in most algorithms 

that try to solve the PMS problem exactly, it seems that this approach is less than ideal for most applications; 

however, research for specific hardware designed to find exact solutions to this problem has recently been 

proposed[18], which may be a worthwhile alternative method to consider.  On the other hand, heuristic-

based approaches are able to solve the problem significantly faster(even more so as the size of the input 

increases), and with an extremely high degree of accuracy – 99.7% on average as in the case with pattern-

based heuristics[7] – which for most practical applications should be sufficient.  Of course, these heuristics 

are likely to be quickly outdated by even more efficient and effective algorithms – the majority of the 

algorithms covered in this review were published in the past ten years, with major leaps in efficiency 

occurring every few years;  it is only expected that more research with emphasis on heuristics would be 

around the corner. 
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