

A SURVEY OF PLANTED MOTIF SEARCH ALGORITHMS

Literature Review
Adrian Kwok

adriank@sfu.ca

SFU ID #200136389

CMPT 711

Professor Wiese

February 23rd, 2011

P A G E 2

1. INTRODUCTION

In Bioinformatics, discovering patterns in a set of DNA sequences is an important problem with many

implications in research. Certain genes are responsible for the expression of other genes; more specifically,

these ‘short’ A,T,C,G strings are examples of regulatory motifs of which proteins known as transcription

factors bind onto which ultimately influence the transcription of downstream genes[19]. Thus, given a

sequence of DNA sequences for which the expression of other genes are present, we wish to discover the

motifs in each sequence that are responsible for the expression of these genes. We can define a simplified

version of this problem as:

“Given DNA sequences of length over the alphabet , discover an -character long motif that occurs

in each sequence at least once.”

This problem by itself is relatively simple to solve, and can be done so “quickly”[19]. However, most

regulatory motifs are not exactly the same in every sequence – that is, certain positions in the motif may differ

in each instance in a sequence, also known as a mutation. Therefore, the simplified problem becomes:

“Given DNA sequences of length over the alphabet , discover an -character long motif that is

present with at most differing mutations in each sequence at least once.”

This is known as the planted -motif search (PMS) problem, which is much more difficult to solve. In fact,

this problem is closely related to a well-known difficult problem in computing science – the COMMON-

APPROXIMATE-SUBSTRING (CAS) problem – which is formally defined as follows:

Instance: A set of strings over an alphabet such that , , and positive
integers and such that , and .

Question: Is there a string such that each string , is Hamming Distance from some length-
substring of ?

Clearly, the PMS problem is a specific case of the CAS problem, where . Unfortunately, both

problems are shown to be NP-Hard[20]. However, certain optimizations can be done with the PMS problem

since d is relatively small in practical applications; there are many algorithms which give an approximate

solution to this problem (that is, it returns a motif which may or may not be correct) as well as algorithms

which solve specific instances exactly relatively efficiently such that these algorithms can be used in

practice. This literature survey intends to provide an overview of the different types of algorithms which

provide solutions to the planted -motif discovery problem.

2. BROAD OVERVIEW OF LITERATURE

As previously mentioned, the planted -motif search problem (PMS) is a difficult problem. However,

clearly the difficulty of the problem depends on different values of and – at a glance, an (10,1) instance of

the problem seems to be much easier to solve than an (15,4) instance. In fact, the (15,4) instance was the first

challenging instance proposed by Pevzner and Sze[1], and several other instances – e.g. (14,4), (16,5), and

(18,6) [2] – have been shown to be also challenging.

The basis for the definition of these challenging instances relies on the expected number of random patterns

which would occur in any particular sequence; these challenging instances are cases where this number is

greater than 1[3]. Intuitively, this corresponds to a loss in accuracy where false motifs are frequently

P A G E 3

considered due to noise. Buhler and Tompa[2] describe that in actuality, there is a defined threshold for for

which it is unlikely that any algorithm can distinguish a planted motif from random noise past this

threshold[3]. While algorithms in the literature successfully solve most general instances of the PMS

problem, some earlier algorithms such as WINNOWER(2000)[4] fail at challenging instances while others

such as PROJECTION(2002) succeed[2].

The majority of algorithms which attempt to solve the PMS problem (and its particularly challenging

instances) are approximation algorithms, while a significantly smaller set of algorithms such as PMS1, PMS2,

PMSPrune[5], and MITRA attempt to solve the problem exactly. A brief description of these two categories

and an overview of different algorithms belonging to these categories will now be described.

2.1 Approximation Algorithms

Approximation algorithms return motifs with a likelihood of certainty that it is the ‘correct’ motif (e.g. correct

in the artificial PMS problem implies the planted motif). One of the earliest papers uses expectation

maximization (EM)[9], where the expected starting position of an -long motif is found using an iterative

approach which re-estimates and re-evaluates the motif position probabilistically until a threshold has been

reached[10][11]. EM laid the foundations for which many other algorithms such as MEME[10],

ProfileBranching[7], and PROJECTION[2] are based on.

An early greedy algorithm by Stormo and Hartzell from 1989 is described in [12] which generates an initial

score matrix containing each -length candidate motif in the first sequence, and then greedily goes through

subsequent sequences one at a time and updates the score matrix based on the ‘best choice’ that preserves

information content between an entry in the matrix and a specific candidate. Stormo builds upon this idea to

form CONSENSUS[13] with Hertz[7] ten years later, which is shown to be efficient compared to other

algorithms[7], but with less accuracy.

PatternBranching, by Price, Ramabhadran, and Pevzner, is a “shamefully simple” yet effective and efficient

algorithm which branches from sample strings to search the motif space[5]. It is formulated specifically to

tackle the challenging instances proposed by Pevzner and Sze[5], and in that regard it is extremely effective,

taking 3 seconds with a 99.7% success rate to solve the initial challenging problem from [1]. Although the

original algorithm is not able to solve some challenging instances such as (15,5), a small improvement to the

algorithm, coined ePatternBranching by Davila and Rajasekaran[16], allows the algorithm to handle much

more difficult algorithms at the expense of generality. Similarly, an improved voting algorithm, with

projection, proposed by Leung and Chin[3] is able to solve the relatively long (40,15)-motif problem with

over a 95% success rate.

2.2 Exact Algorithms

Also known as combinatorial algorithms, the amount of literature on exact algorithms with an emphasis on

challenge problems is relatively little compared to that on heuristic-based algorithms most likely due to its

impracticality as the problem is NP-Hard; the predominant algorithms are PMS1, PMS2, and its variants, by

Rajasekaran et. al. [5][6], and MITRA, by Pevzner and Eskin[8]. PMS1 and PMS2[6] are relatively simple

algorithms, which exhaustively generate all possible candidate motifs from each sequence and prunes them

to return a consensus motif – these algorithms are also known as pattern-based algorithms[7]. PMS2 is

known to solve challenging instances such as (15,4) but requires nearly 1GB of memory[5]. PMSi, PMSP, and

PMSprune[5] build upon these algorithms to achieve better time complexity and space usage using

techniques such as branch and bound. MITRA[8] is another pattern-based algorithm and uses mismatch trees

to prune the search space as an improvement to the WINNOWER algorithm; it solves challenging instances

such as (15,4) quicker than PMS2 and requiring only one tenth of memory[6][8].

P A G E 4

3. KEY PAPERS

Finding Composite Regulatory Patterns in DNA Sequences – Eskin and Pevzner (2002)

An efficient exact algorithm for its time is proposed in Eskin and Pevzner’s 2002 paper[8], named MITRA

(MIsmatch TRee Algorithm). MITRA follows a pattern-based approach to solving the problem, sharing

similarities with Rajasekaran’s PMS1/2 paper[6] in analyzing the -neighbourhood of all possible -

mers, deemed the “Sample Driven Approach” (SDA) initially described by Waterman et. al in 1984[5].

However, MITRA does one notable optimization: it realizes that going through the -neighbourhood of all

 -mers is not optimal, since there are many -mers that are just not frequent enough and should not be

considered. It discards these uninteresting -mers through the use of a Mismatch Tree, a data structure which

is similar to a suffix tree except that the children of a node all contain suffixes of its parent with up to

mismatches. It uses this Mismatch Tree in a branch and bound approach to split the space of all -mers into

subspaces based on the number of mismatches, only going through paths in the tree that it deems to be “not

weak”, thus saving a lot of memory as it does not require the storage of all possible candidate -mers.

According to the paper’s results, MITRA is able to solve all of Pevzner and Sze’s[4] challenge problems with

ease, a task that many other prior algorithms has failed. Furthermore, MITRA is able to solve other instances

that the authors deem to be more difficult than the challenge problems. Unfortunately, the authors do not

rigorously define an upper bound for MITRA and its graph-based variant, so it is uncertain how well it may

perform for other, non-preconceived instances, especially since solving the exact PMS problem is at best

exponential.

Exact Algorithms for Planted Motif Challenge Problems – Rajasekaran, Balla, Huang (2005)

In their paper, Rajasekaran et. al. introduce two exact algorithms to solve the planted motif problem: PMS1

and PMS2[6]. Their first algorithm, PMS1, is relatively simple; it goes through each single input sequence

and lists all -mers from into a corresponding set . Then, for each -mer from , it generates the set of all

possible -length patterns with a hamming distance away from the -mer and stores it into . Each is

then sorted in linear time using an integer sorting algorithm and merged together. The motif that occurs in

all is the planted motif.

Essentially, the algorithm exploits the idea that one -mer in each sequence must be distance away from the

planted motif. Thus, it goes through all candidate motifs for each sequence (the -neighbourhood of each

 -mer) and outputs the same candidate motif that shows up across all sequences, which ultimately

corresponds to the planted motif.

The authors claim a bound of

 , where is the number of input sequences, and is the word

length of the computer. This bound is understandable based on the algorithm presented, but the authors then

quickly state that a secondary bound of

 is “achievable”. It’s not immediately clear how

this is the case, as this secondary bound is stricter for problems when is small.

The authors then present a second algorithm, PMS2, which improves on PMS1 based on the following two

observations:

P A G E 5

1.) Since the target motif occurs in each input sequence, all substrings must also occur in each input

sequence. This corresponds to different -mers for each input sequence which

corresponds to the target motif.

2.) These -mers, in sequence, can be used to obtain the target -mer.

Like PMS1, two very complex bounds for PMS2 is shown as a theorem. No explanation or proof for the bound

is given, and it is very unclear how one can arrive at such a conclusion.

The paper provides new insight as to how to efficiently explore the motif search space to find exact solutions

to the PMS problem. Again, however, attempting to solve this problem exactly is likely not that practical for

all input as the problem is NP-Hard. The authors show that PMS1 and PMS2 are much faster than MITRA for

small (e.g.); these results correlate with the independent implementation results shown in [14].

However, unlike MITRA which was shown as being able to solve cases even when , albeit slowly,

Rajasekaran’s algorithms are unable to compute instances with higher due to the algorithms’ high

memory requirements. This is quite a big deterrent for these algorithms since the set of applicable instances

is so restricted. Furthermore, even for applicable instances, computing challenge instances such as (15,4)

requires orders of magnitude more time over other heuristic based approaches such as PatternBranching,

which gives excellent results in practice.

Finding Motifs Using Random Projections – Buhler, Tompa (2002)

Buhler and Tompa introduce a fresh approach to solving the motif finding problem; their algorithm,

PROJECTION, utilizes randomization to find motifs that have a high likelihood of being the planted motif. It

was quite effective for its time, besting GibbsDNA, WINNOWER, and SP-STAR for several challenging PMS

instances.

In PROJECTION, the user first chooses a value , where ideally, and hash buckets are created,

representing all possible -mers. independent trials are then performed; in each trial, the algorithm

chooses random numbers from the set . The algorithm then goes through each -mer in every input

sequence, and each -mer is projected (hashed) into one of the buckets by using the random numbers

(chosen at the beginning of the trial) as positions in the -mer; an -mer is hashed into the bucket represented

by the concatenation of the positions in the -mer – for example, if we have the 5-mer ACGTA and positions

{1, 3, 5} are randomly chosen initially, then ACGTA would hash to the AGA bucket.

Thus, some of the buckets will have more -mers than others; the algorithm uses a set threshold to figure

out which buckets are ‘interesting’ – the -mers in these interesting buckets are then refined to find the

planted motif using Expectation Maximization[9].

According to the paper’s results, PROJECTION performs similarly, if not better, than GibbsDNA, WINNOWER,

and SP-STAR for cases where is between 10 and 19 and is between 2 and 6 – more importantly, it is able to

solve the (14,4), (17,5), (19,6) difficult problems exceptionally better than these algorithms. Unfortunately,

while the algorithm’s effectiveness is shown in the results, its efficiency is not, as computing times are

omitted altogether. Furthermore, as mentioned by its authors, PROJECTION has problems with instances

outside of these ranges; later improvements by other authors[3][25] attempt to fix these problems.

P A G E 6

Finding subtle motifs by branching from sample strings – Price, Ramabhadran, Pevzner (2003)

Pevzner, Price, and Ramabhadran introduce a simple pattern-based branching algorithm, PatternBranching

alongside an equally simple profile-based branching algorithm, ProfileBranching in their seminal 2003

paper[7]. Although said to be “shamefully simple” by its authors, it’s one of the fastest and most effective

solutions to the PMS problem – Davila and Rajesekaran[16] describe PatternBranching as “one of the fastest

non-exact algorithms and […] runs in a couple of seconds with an experimental success rate of near 100%”.

Instead of exhaustively analyzing all -mers in each sequence, the PatternBranching algorithm looks at the

whole sample sequence as one concatenated input, and focuses only on -mers that are deemed interesting.

Initially, it creates an arbitrary candidate motif and chooses the first -mer in the concatenated sequence as

the ‘start’ of the branch. Then, for iterations, it chooses the next -mer to look at based on a

BestNeighbour() function – this function chooses an -mer that differs from the current -mer by exactly 1

position and minimizes the total distances between the chosen -mer and the overall sequence. If at each

iteration the current -mer is a better choice than the current candidate motif – that is, it minimizes the total

distance as discussed previously – the current candidate motif is updated as the current -mer.

The ProfileBranching algorithm uses the same approach as the PatternBranching algorithm, but with four

notable changes listed by the authors:

1.) Each sample string is converted instead to a profile for the string using a method similar to that

used in MEME’s [17].

2.) Change the scoring method to score profiles based on an entropy score.

3.) Modify the branching method to account for profiles by modifying BestNeighbor’s criteria

4.) Use the top-scoring profile as a seed in the EM algorithm, running until convergence.

Both PatternBranching and ProfileBranching, as discussed before, are extremely effective algorithms, even

for the (15,4) challenge problem. PatternBranching is shown to be significantly faster than other algorithms

such as PROJECTION, MITRA, and MULTIPROFILER while maintaining close to 100% accuracy. However, the

authors’ comparison method seems haphazard, as the other algorithms – aside from MULTIPROFILER – are

run on significantly slower machines. On more challenging problems, defined as instances with ‘dim’ planted

motifs such as the (15,4) instance with sequences of length 2000 (instead of 600 originally),

PatternBranching has over a 99% success rate while PROJECTION falls to 80%, taking only a “few minutes”

compared to MULTIPROFILER which takes over an hour. Again, however, the tests for PatternBranching are

run on a 1.0GHz machine versus 500Mhz for MULTIPROFILER, which skews the results somewhat.

ProfileBranching is shown to be roughly twice slower than CONSENSUS and GibbsDNA on the original

challenge problem, but with a much greater degree of ‘success’ based on a performance coefficient of the

resultant profile; PatternBranching, is still roughly 27 times faster than ProfileBranching. However, on

instances deemed unsolvable for pattern-based algorithms – that is, instances where motifs differ in always

the same two positions – ProfileBranching has a performance coefficient of 0.99 versus 0.1 for

PatternBranching and 0.63 for MEME.

PatternBranching has been shown to fail to solve more difficult problems[16], but a simple improvement to

the algorithm to account for these problems is provided by Davila and Rajasekaran.

P A G E 7

4. FUTURE TRENDS

Since the planted -motif search problem is NP-Hard, and reflected through the results in most algorithms

that try to solve the PMS problem exactly, it seems that this approach is less than ideal for most applications;

however, research for specific hardware designed to find exact solutions to this problem has recently been

proposed[18], which may be a worthwhile alternative method to consider. On the other hand, heuristic-

based approaches are able to solve the problem significantly faster(even more so as the size of the input

increases), and with an extremely high degree of accuracy – 99.7% on average as in the case with pattern-

based heuristics[7] – which for most practical applications should be sufficient. Of course, these heuristics

are likely to be quickly outdated by even more efficient and effective algorithms – the majority of the

algorithms covered in this review were published in the past ten years, with major leaps in efficiency

occurring every few years; it is only expected that more research with emphasis on heuristics would be

around the corner.

5. REFERENCES

1. Pevzner, P.A. and Sze, S., “Combinatorial approaches to finding subtle signals in DNA sequences”. In

Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 269-

278.

2. Buhler, J. and Tompa, M., “Finding motifs using random projections”. Journal of Computational Biology

(2002), Volume 9, Issue 2, pp. 225-242.

3. Leung, H. and Chin, F., “Algorithms for challenging motif problems”. Journal of Bioinformatics and

Computational Biology (2006), Volume 4, Issue 1, pp. 43-58.

4. Keich, U. and Pevzner, P.A., “Subtle motifs: defining the limits of motif finding algorithms”.

Bioinformatics (2002), Volume 18, Issue 10, pp. 1382-1390.

5. Davila, J., Balla, S., and Rajasekaran, S., "Fast and Practical Algorithms for Planted (l, d) Motif Search”.

IEEE/ACM Transactions on Computational Biology and Bioinformatics (2007), October-December, pp.

544-552.

6. Rajasekaran, S., Balla, S., and Huang, C.-H., “Exact Algorithms for Planted Motif Problems”. Journal of

Computational Biology (2005), Volume 12, Issue 8, pp. 1117-1128.

7. Price, A., Ramabhadran, S., and Pevzner, P.A., “Finding subtle motifs by branching from sample strings”.

Bioinformatics (2003), Volume 19, Issue2, pp. 149-155.

8. Eskin, E. and Pezner, P.A., “Finding composite regulatory patterns in DNA sequences”. Bioinformatics

(2002), Volume 18, Issue 1, pp. 354-363.

9. Lawrence, C.E. and Reilly, A.A., “An expectation maximization(EM) algorithm for the identification and

characterization of common sites in unaligned biopolymer sequences”. Proteins: Structure, Function,

and Bioinformatics (1990), Volume 7, Issue 1, pp. 41-51.

10. MEME - Unsupervised Learning of Multiple Motifs in Biopolymers Using Expectation Maximization

11. Do, C.B. and Batzoglou, S., “What is the expectation maximization algorithm?”. Nature Biotechnology

(2008). Volume 26, No. 8, pp. 897-899.

12. Stormo, G.D. and Hartzell, G.W., “Identifying protein-binding sites from unaligned DNA fragments”. In

Proceedings of the National Academy of Sciences of the United States of America (1989), Volume 86,

Issue 4, pp. 1183-1187.

13. Hertz, G.Z. and Stormo, G.D., “Identifying DNA and protein patterns with statistically significant

alignments of multiple sequences”. Bioinformatics (1999), Volume 15, Issue 7, pp. 563-577.

P A G E 8

14. Locke, C., “Implementation of Planted Motif Search Algorithms PMS1 and PMS2”, BioGrid Research

Experience for Undergraduates, Summer 2008. University of Connecticut, CT.

15. Waterman, M.S., Arratia, R., and Galas, D.J., “Pattern recognition in several sequences: Consensus and

alignment”. Bulletin of Mathematical Biology (1984), Volume 46, Number 4, pp. 515-527.

16. Davila, J., “Extending Pattern Branching to Handle Challenging Instances”, In Proceedings of the Sixth

IEEE Symposium on Bioinformatics and BioEngineering(BIBE ’06). IEEE Computer Society, Washington,

DC, USA, pp. 65-69.

17. Bailey, T.L. and Elkan, C., “The value of prior knowledge in discovering motifs with MEME”. In

Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology (1995),

pp. 21-29.

18. Kent, K.B., Schaick, S.V., Rice, J.E., and Evans, P.A., “Hardware-Based Implementation of the Common

Approximate Substring Algorithm”, In 8th Euromicro Conference on Digital System Design (2005), pp.

314-321.

19. Jones, N. and Pevzner, P., “An Introduction to Bioinformatics Algorithms,” MIT Press, Cambridge, MA,

2004.

20. Evans, P.A.,Smith, A.D., Wareham, H.T., “On the complexity of finding common approximate substrings”.

Theoretical Computer Science (2003), Volume 306, Issues 1-3, pp. 407-430.

21. Leung, H.C.M and Chin, F.Y., “Algorithms for challenging motif problems”. Journal of Bioinformatics and

Computational Biology (2006), Volume 4, Issue 1, pp. 43-58.

22. Leung, H.C.M, Chin, F.Y.L., Yiu, S.M., Rosenfield, R., Tsang, W.W., “Finding Motifs with Insufficient

Number of Strong Binding Sites”. Journal of Computational Biology (2005), Volume 12, Issue 6, pp. 686-

701.

23. Pisanti, N., Carvalho, A.M., Marsan, L., Sagot, M.-F., “RISOTTO: Fast extraction of motifs with

mismatches”. In Proceedings of the 7th Latin American Theoretical Informatics Symposium, Volume

3887, pp. 757-768.

