

VISUALIZING BIOINFORMATICS ALGORITHMS

Final Project Report
Adrian Kwok

adriank@sfu.ca

SFU ID #200136359

CMPT 711

Professor Wiese

April 26th, 2011

P A G E 2

1. RESEARCH QUESTION

 Bioinformatics is an interdisciplinary field, drawing expertise from many different areas

of computer science, molecular biology, biochemistry, and other sciences. However, a

fundamental understanding of the algorithms and workings behind the techniques and tools used

in this field is crucial for success. Because of this, CMPT 711 is a required course for students at

Simon Fraser University intending to pursue a degree in Bioinformatics; it is a course with a

strong emphasis on the theoretical and algorithmic side of computing science. Unfortunately,

due to its interdisciplinary nature, some of these students may not have had any prior formal

training in computing science, making much of the course material difficult to understand.

 Given the complexity of the algorithms covered in this course, is there an effective and

efficient alternative method to present this information so that most students can build upon and

solidify the concepts they learn during lectures? More specifically, is it possible to visualize

these algorithmic concepts in such a way that students who aren‟t naturally adept at learning

from lecture slides and textbooks[2] can do so more easily?

2. OBJECTIVES

 As stated in the previous section, the main problem I addressed in my project was to

make the more difficult algorithms discussed in CMPT 711 easier to understand for students

without a strong background in computing science. I accomplished this by developing learning

tools which allow students to interactively run through bioinformatics-related algorithms step by

step while simultaneously showing what the algorithms (and its related data structures) are doing

with strong visual cues. The most challenging aspect to this project was in reinterpreting the

algorithms in such a way that it is easily comprehensible to students while still maintaining the

integrity of the algorithms itself.

In my project proposal, I initially proposed three primary objectives for the project:

1.) The relevance of the tool for current and future students of CMPT 711.

2.) The correctness of the tool in portraying how a specific algorithm works.

3.) The effectiveness of the tool in helping students understand and analyze the runtime of

difficult algorithms.

 However, after careful deliberation, further refinements on these objectives were made.

Due to the importance yet trivialness of the first objective, it was delegated as a preliminary

objective – while ample thought was given in choosing the algorithms that the learning tools are

built upon, the number of “difficult” algorithms introduced in each topic covered were few, and

thus these decisions were relatively simple. Furthermore, the second initial objective – the

correctness of an algorithm – while important, should be an implied characteristic of the

P A G E 3

effectiveness of the learning tools developed; an incorrect interpretation of an algorithm would

clearly result in an ineffective learning tool, and thus the objective itself is redundant.

 With these thoughts in mind, the following four refined objectives were identified prior to

the development of each learning tool and were the primary considerations during each tool‟s

initial design process – most design decisions were based on fulfilling these objectives.

Preliminary Objective: The learning tools developed should cover one difficult algorithm

from three of the topics covered in the course.

 As mentioned previously, the learning tools should be based on difficult algorithms

chosen from the topics taught in CMPT 711. In this semester‟s course offering, five of the

following topics were covered: Restriction Mapping, Motif Finding, Genome Rearrangements,

Pair-wise Sequence Alignments, and Multiple Sequence Alignments.

 A difficult algorithm should be defined one that is the most complex in its respective

topic, or one that is somewhat complex yet fundamental to the understanding of more

complicated subsequent topics. The associated objective in the project proposal assumed that

eight topics would be covered by the end of this course, and as such the initial optimistic

estimate was that seven learning tools would be developed for these eight topics. Unfortunately,

due to time constraints and unexpected difficulties, this objective has been refined to focus on

only three learning tools for these five topics.

Objective 1: The learning tools should be effective in portraying how an algorithm works.

 This objective is a difficult metric to quantify: effectiveness, in this context, can be

generally defined as whether a student using the tool will be able to learn what an algorithm is

doing at each step. More specifically, the tool can be deemed to be effective if the tool portrays

the material in a more useful or convincing manner than via the lectures and the textbook alone.

Do note, however, that this objective does not imply that the tools are meant to be substitutes for

conventional teaching methods – they are merely meant to supplement the course material, not

replace it. In this vein, the learning tools should effectively show what an algorithm is doing at

each step, but not why it is doing it – the onus of algorithmic analysis is placed on the course

instructor and is beyond the scope of this project.

 To create an effective learning tool for an algorithm, it is imperative that careful analysis

of the algorithm be performed such that its most crucial aspects – for example, its underlying

data structures, its decisions made at each step, and its computational complexity – are portrayed

efficiently with its corresponding ideal visual representations. Moreover, the tool must also be

aware of information overload: many of the algorithms discussed in CMPT 711 actually have

P A G E 4

many intricate details happening at each algorithm iteration, and the more information that is

portrayed on the screen at any given time leads to an overall ineffectiveness of the whole

interface.

 Since the learning tools are intended to supplement the lectures and text, it is important

that the tools follow the way the algorithms are portrayed there. A severe disconnect between a

learning tool‟s interpretation of the algorithm and how an instructor chooses to teach the material

will undoubtedly lead to confusion; an effective tool is one that causes the least amount of

ambiguity as to how an algorithm actually works, without contradicting the way the material is

initially taught to the student.

Objective 2: The learning tools should work for a variety of different inputs and allow a

student to traverse from algorithm iteration to iteration.

 The justification for this objective is that this encourages students to explore an

algorithm‟s inner workings – if a student was restricted to only a few sample inputs, they would

be unable to try to see on their own when an algorithm would perform admirably and when it

would perform poorly (this is the next objective, Objective 3) – for example, many algorithms

perform exponentially worse when the input size increases linearly: it is imperative to allow for

such inputs so that students can understand these failures.

 Furthermore, by allowing a student to efficiently traverse from step by step on their own,

they will be able understand how an algorithm works at their own pace; the ability to backtrack

whenever necessary, or quickly revert back to an algorithm‟s initial or completed state

encapsulates a variety of different uses for the tool aside from its original intention – for

example, a student may be able to use the tool to check whether their handwritten

implementation of an algorithm is correct.

Objective 3: The learning tools should show the strengths of weaknesses of each algorithm.

 This objective focuses on the actual complexity of an algorithm; ideally, the strengths and

weaknesses of each algorithm should be implicitly shown via the learning tool – that is, for some

inputs, it should be abundantly clear when an algorithm performs poorly. The basis for this

objective lies in a shortcoming with many of the examples shown for these algorithms in both the

textbook and the lectures; for example, in the Branch and Bound algorithm for the Partial Digest

Problem, trivial, almost best-case inputs are used to illustrate how the algorithm works. Without

understanding why or when an algorithm may perform poorly, a student may arrive at an

incorrect notion regarding the effectiveness of an algorithm; although formal runtime analyses

such as the use of Big-O notation attempt to illustrate this, actual practical examples drive the

point home for students who are not familiar or particularly comfortable with theory.

P A G E 5

3. METHOD

 As mentioned previously, the three primary objectives were referred to throughout the

design process of each learning tool. To fulfill the first preliminary objective, three learning

tools were developed for the three topics – Motif Finding, Restriction Mapping, and Pairwise

Sequence Alignment – corresponding to the Branch and Bound Algorithm for the Median String

Problem, the Branch and Bound Algorithm for the Partial Digest Problem, and the Dynamic

Programming Solution to the Global Pair-wise Alignment Problem. The justification for

choosing these algorithms will be discussed in their own respective sections.

 Of particular note, a learning tool was not developed for the Genome Rearrangements

topic as the algorithms covered in those lectures were relatively trivial – the most difficult

algorithm was ImprovedBreakpointReversalSort, which requires simply defining breakpoints and

increasing strips and can be easily replicated and understood by identifying them on paper. On

the other hand, while Multiple Sequence Alignment was one of the more difficult topics

presented in the course, it was covered hastily during the last week of the semester, and as a

result there was not enough time to develop a fully fledged tool for it.

 For each learning tool developed, it was important that clearly written instructions were

given to the student at each step of an algorithm, explaining what it is doing on the off-chance

that the visualization is unclear. Each learning tool will now be discussed in detail, highlighting

how they tackled the objectives stated previously.

3.1 METHOD: MOTIF FINDING

 The algorithm that was focused on for the Motif Finding topic was the Branch and Bound

Algorithm for the Median String Problem. Two different approaches for finding motifs were

covered in this topic – the first by analysing the search space of motif starting positions in each

sequence (Motif Finding), and the second by analysing the search space of possible candidate l-

mers (Median String). As will be discussed shortly, the Median String representation of the

problem was chosen as it allowed for a more natural way to visualize the algorithm‟s steps –

furthermore, the median string approach is a much more practical algorithm as the search space

does not grow alongside the length of the input sequences.

For the learning tool to be effective, there were three main factors that needed to be considered:

1.) How the algorithm goes about finding l-mers to analyse, and how it bypasses

pointless l-mers.

2.) What the algorithm actually does when it is analysing an l-mer – that is, how does it

calculate the total distance for an l-mer?

P A G E 6

3.) The effectiveness of the bounded approach – that is, how many actual l-mers are

bypassed as the algorithm progresses? The number of analysed prefixes?

 This learning tool was the most difficult to develop out of the three – not in terms in

technical difficulty, but in terms of figuring out the best way to interpret the algorithm‟s

decisions at each step. At times, Objective 1 and Objective 2 from Section 2 were in direct

conflict with another: the algorithm relies heavily on the use of a prefix tree, which is a fully

balanced tree with nodes, where is the input target l-mer length. With a l-mer length

of , which is a reasonable input size, this corresponds to 262143 nodes in the prefix tree,

making it extremely difficult to provide a visualization where screen real estate is heavily

constrained. Even initial attempts in visualizing a prefix tree with l-mers of length proved

to be extremely difficult without a sophisticated zooming mechanism, but even then, students

may be confused when the algorithm is zoomed-in and is shifting from node to node.

 Furthermore, another problem is that for students without a formal theoretical

background, tree traversals may not overly intuitive; even though a tree-based structure is

familiar to most computer scientists, the prefix tree itself and the algorithm‟s operations on the

tree – NextVertex() and BypassVertex() – cause confusion, even to graduate students in CS such

as myself. In actuality, there is a more natural and habituated way to represent these operations

in a list-based structure:

1.) NextVertex() essentially increments a number in the usual way with carry-overs. For

example, applying NextVertex() in succession to a number such as 189 will result in

190, 191, 192, and so forth. With the added complexity of number prefixes, a small

modification would be made such that prefixes are “counted” as an additional digit.

For example, 189 would result in 19-, 191, 192, 193, and so on.

2.) BypassVertex() is similar to NextVertex(), but is utilized on prefixes only, and with

the last non-prefix digit being incremented. For example, applying BypassVertex() in

succession to 18- would become 19-, 2--, 3--, 4--, and so on.

 Thus, a decision was made to present the prefix tree in the algorithm as a list of traversals

along the tree. This further allows a student to easily identify l-mers of particular interest: for

example, l-mers that are found to be temporary candidates for the actual motif, could be easily

highlighted in the list to denote importance. Furthermore, each step of the algorithm can be

naturally defined as an l-mer; traversing through the steps of the algorithm would be no different

than traversing through each of the analysed l-mers in the prefix tree (Objective 2). As an added

benefit, the list-based approach allows the student to intuitively see that the number of Bypasses

increases significantly as the algorithm progresses.

 To show what the algorithm actually does when it is analysing an l-mer, it was necessary

to show where the best alignment in each sequence a candidate l-mer is, and its corresponding

P A G E 7

number of mismatches (hamming distance). This was a facet that was clearly conveyed through

the lecture slides and the textbook, and as such, a similar representation is used in the learning

tool.

 To fulfill Objective 3 – that is, showing the strengths and weaknesses of the algorithm –

it was necessary to provide adequate visual feedback as to how many prefixes and l-mers are

analysed, how many are bypassed, and what the total number of possible l-mers are – this clearly

conveys the importance of the bounded approach over the bruteforce approach. This was done

both via color codes in the l-mer traversal list and via text labels showing these properties at each

step. In combination with Objective 2, students would be clearly able to see that for large input

sizes (e.g. or with a large number of long input sequences), while the bounded approach

is able to shave off a considerable number of l-mer analyses, there are still a significant number

of prefixes that need to be analysed.

3.2 METHOD: RESTRICTION MAPPING

 The algorithm that was deemed to be the most difficult in the Restriction Mapping topic

was the Branch and Bound Algorithm for the Partial Digest Problem. Given that the only other

algorithm that was covered in this topic was the brute force approach, this was a trivial decision.

 The algorithm itself is straightforward and was used as an initial testbed for development

techniques for subsequent learning tools. The algorithm was covered in detail in the lecture

slides with a relatively simple visual representation of the restriction map shown for each

remaining length insertion into the map, as shown in [Figure 0]. However, this visualization

only works well when the length chosen at each step actually fits (i.e. no backtracking is

involved); it does not take into account “in-progress” length decisions, nor does it take into

account the branching nature of the algorithm and what can happen when an incorrect decision is

made.

[Figure 0]: Lecture slides’ visual representation of the Restriction Map

 As stated in Objective 2, students should be able to easily traverse from algorithm

iteration to iteration; however, it was difficult to decide on a proper granularity for each step. If

a step ignores the algorithm‟s decision making process – that is, a step only shows a length being

placed on either the left or right side of the restriction map – the student may be to be confused

as to how and why a length‟s position on the restriction map is inferred. Furthermore, it should

be abundantly clear what it means for a length to „fit‟; the additional lengths created by adding a

singular length to the restriction map should be shown, and if these additional lengths are not

part of the available lengths left, then the singular length would not fit. In this vein, a step in the

P A G E 8

learning tool was defined as separate decisions made by the algorithm, with additional steps for

actual length placements.

 To account for the need to visualize lengths that are under consideration of being placed

on either the left or the right of the restriction map – that is, to show the student what additional

lengths would be created by the placement of a specific length – a 2-dimension map was adopted

in the learning tool. The extra dimension allows us to convey length placement attempts via the

use of solid colors, and actual length placements via solid lines as in [Figure 0].

 To account for the need to visualize „poor‟ decisions made by the algorithm, a colored

decision tree was used, where a left branch on the decision tree infers that a length was placed on

the left side of the restriction map, and a right branch infers that a length was placed on the right

side of the restriction map. Without formally portraying the decisions and backtracks the

algorithm makes, it is extremely difficult to understand why the algorithm has an exponential

runtime, violating Objective 3. Furthermore, since recursion is a difficult topic for many

students, the learning tool needs to be abundantly clear where each visual step corresponds to in

the overall algorithm in order to adhere to Objective 1; this was accomplished by highlighting

specific line numbers in the algorithm pseudo code provided in the lecture slides and textbook at

each step.

3.3 METHOD: PAIR-WISE ALIGNMENTS

 The algorithm that was focused on for the Pair-wise Alignment topic was the Dynamic

Programming solution for the Global Pair-wise Alignment Problem. More specifically, a

learning tool was developed for the simplest variation of the problem – the Longest Common

Subsequence problem – where only nucleotide matches influence the score of an alignment. The

rationale behind choosing this simple algorithm to visualize is that all other algorithms in the

same topic (Chapter 6 in [1]) utilize some variation of this underlying framework – for example,

the second solution covered is based on the same algorithm but with penalties based upon a

simple lookup in a scoring matrix, and the most complicated algorithm incorporates affine gap

penalties, which is also just a simple modification of the underlying scoring mechanism.

Understanding fundamentally how the most basic sequence alignment works is imperative for

success in this and subsequent topics; more specifically, while dynamic programming is a

technique that is well known for most computer scientists, students who have never utilized this

technique may misunderstand or misinterpret the algorithm, compounding the issue when

alignments are generalized past paired sequence comparisons.

 As dynamic programming is best visualized using a tabular structure, Objective 1 was

accomplished by closely following the textbook‟s representation of the score matrix with

backtracking during the creation of this learning tool. The algorithm itself is straightforward –

given - and -long nucleotide sequences, an table is initialized with scores of zero in

the first row and first column. Then, each cell in each row is populated based on the scores of its

P A G E 9

neighbours, and a backtracking pointer is used to point to the neighbouring cell that it inferred its

score from. When the table is finished populating, a backtrack path is generated using the

backtrack pointers starting from the cell, and a global alignment is inferred using this

path. However, the algorithm presented in the textbook does not result in the same backtracking

pointers generated via the examples in the same textbook; the algorithm described in the

textbook results in backtrack arrows being assigned differently in tie-breaking situations that do

not correspond to the example tables in the textbook. Ideally, if there are multiple optimal

alignments (i.e. same LCS length), the learning tool‟s dynamic programming table should be

identical to the examples shown in the textbook – this was remedied by modifying the algorithm

slightly when it assigns backtracking pointers in tiebreaking scenarios.

 Similarly, there is ambiguity in the last step of the algorithm in the lecture slides. The

formal LCS algorithm only prints out the nucleotide matches between the two sequences

recursively – how the actual backtracking path is converted into a global alignment is unclear.

While it is true that insertions and deletions can be inferred simply by the directionality of each

backtracking pointer, why this is the case is vague and insufficient for a learning tool.

Fortunately, the textbook uses a different representation of the backtrack path to more easily

convey how an alignment is created ([1], pp. 170), and thus this representation was used in the

final steps of the learning tool.

 Another problem faced was that both the lecture slides and the textbook do not utilize

backtrack pointers for the first row and the first column of the dynamic programming table – this

leads to only a partial alignment when the input sequences are not ideal. For example, the two

sequences “ACG” and “TTTACG” would result in a backtrack path that creates an alignment of

“ACG” and “ACG”, not the full alignment of “---ACG” and “TTTACG”. This was corrected by

creating initial backtrack pointers for the first row and first column pointing back to the

cell, as shown in [6].

 Since it is important that students are able to trace through the steps of the algorithm

manually (Objective 2), choosing an ideal step granularity is an important concern. Surely,

populating the entire table in one step (e.g. as shown in the textbook) trivializes the problem, and

the generation of each cell of the table should be clearly defined as singular steps. The learning

tool addresses this by counting the table initialization as one step, each subsequent table entry

population as an additional step, the identification of the backtrack path as one step, and the

generation of the alignment as several steps, with each step corresponding to an entry in the

backtrack path. As an additional benefit of this step definition, students would be able to clearly

see the amount of time and space it takes to analyse each step of the by table, and should be

able to infer that further improvements can be made onto the algorithm itself (Objective 3) – for

example, that it isn‟t entirely necessary to store the whole table in memory to calculate the best

possible alignment.

P A G E 10

4. TOOL

The learning tools were written in Java, and used Netbeans 6.9‟s GUI builder for developing the

user interface of two of the three tools. The Model-View-Controller pattern[8] was used

extensively throughout development, which decouples the actual algorithm computations and the

GUI. A structural diagram of major components for the learning tools is provided in [Figure 5].

[Figure 1]: Structural Diagram of Major Components

 The main class for each learning tool simply creates an InputUI instance, which shows

the initial GUI for querying user input for the underlying algorithm. Once the user has

confirmed the input, the problem is solved using the corresponding algorithm. While the

problem is being solved, a snapshot of the algorithm is taken at each step (which includes

important variables utilized later in the visualization), and hand written instructions are also

compiled describing what the algorithm is doing. These snapshots are stored in an ArrayList of

AlgStep objects for the Restriction Mapping and Motif Finding learning tools, and, for efficiency,

as an array of instruction Strings for the Pairwise Alignment learning tool. The actual Main GUI

is then created and only has access to these snapshots generated by the algorithm – it then

portrays these snapshots in a visual manner to the user, and allows them to traverse through the

snapshots as requested.

Main Class

Show Input UI

Input UI
Gathers user input

Solver Class
Runs specified algorithm and

takes a snapshot of relevant

variables at each “important”

step with word-based

instructions.

Interpret/check

user input and

feed into Solver

Main UI
- Allows user to go through

each “snapshot” generated

by the Solver class.

- Creates visualizations based

on the variables gathered at

each snapshot.

- Depicts formatted

instructions to the user.

Forward algorithm

snapshots + instructions

P A G E 11

5. USER GUIDE

 The learning tools have been precompiled and can be launched in the by double-clicking

PartialDigest.jar, MedianString.jar, or PairwiseAlignment.jar. Alternatively, using Netbeans

6.9, it is possible to select each learning tool‟s folder as a project and recompile it if necessary.

Since the learning tools are meant to be user friendly, simple default inputs are provided at

program startup, and randomized input can be generated using simple dialogs. Using these

learning tools should be relatively self explanatory, given its intended purpose.

6. SAMPLE SESSION

 [Figure 2] shows an instance of the learning tool for the Restriction Map topic, with the

branching tree visualization tab visible, which highlights where lengths have been placed in the

past and removed (in gray) and are currently placed (in red). Users are only able to navigate

through the algorithm using only a horizontal slider, purposely constraining the amount of

possible actions a user can perform. The in-progress restriction map and current length decisions

are shown with a corresponding visual representation.

[Figure 2]: Learning tool for the Restriction Map topic

P A G E 12

 [Figure 3] shows an instance of the learning tool for the Motif Finding topic. As

discussed in the methodology section, a list of l-mers and prefixes being traversed is shown with

color codes denoting algorithm decisions at each particular step. A step outlined in red denotes a

prefix that is bypassed, green denotes an l-mer that was recorded as having the best total distance

up to that point, and grey denotes a prefix that was not bypassed. At a specific step, the user is

shown the number of l-mers analysed and bypassed, as well as the prefixes analysed up to that

point.

 To illustrate how the total distance for the l-mer at a current step is calculated, the

sequence visualization panel shows the best possible alignment (i.e. minimizes the hamming

distance) for the l-mer in each sequence. Mismatching nucleotides are depicted in red.

Furthermore, the best possible l-mer found up to that step is shown below the sequence

highlighted in green, and similarly nucleotide mismatches are highlighted in red.

[Figure 3]: Learning tool for the Motif Finding topic

 [Figure 4] shows an instance of the learning tool for the Pair-wise Sequence Alignment

topic, with the last step of the algorithm being currently selected. The dynamic programming

table is shown on the right portion of the screen, and each cell shows the best possible score for

the two subsequences at that cell, as well as the backtrack path leading up to that cell. This

tabular representation is based heavily upon the examples shown in the textbook ([1], pp. 173).

P A G E 13

At predetermined intervals, highlighted with a marking on the algorithm step slider, the tool goes

through the table‟s initialization step, each cell‟s population step, and the actual alignment

generation steps.

 The backtrack path corresponding to the final alignment is shown in a panel at the bottom

portion of the tool. This representation is also drawn heavily from the textbook ([1], pp. 170),

and the red cell indices denote insertions and deletions.

[Figure 4]: Learning tool for the Pair-wise Sequence Alignment topic

7. LISTING

 The Java code for each learning tool is placed under its respective /src/ directory. The

code is documented in-line, and non-trivial functions have method comments. Only the standard

libraries java.util.*, java.awt.*, and javax.swing.* were used, and all other code is hand-written

with no external help. A full file listing is provided in listing.txt in the root directory.

P A G E 14

8. RESULTS AND EXTENSIONS

Due to the nature of my project, I emphasized the objectives and methodology sections moreso than the results of my

project; the only results I have are the tools I developed, and user testing is necessary for more in-depth discussion.

 Prior to the creation of the learning tools, the objectives in Section 2 were defined and

referred to throughout the design process. However, they are high level concerns and give a

sense of what needs to be developed, but not exactly how they should be portrayed on the screen.

When actually writing the GUI-centric code, Donald Norman‟s fundamental principles of

design[7] were used as a guide for most design decisions such as widget placement and choice.

 In the end, I came up with what I felt were the best solutions in accomplishing the initial

objectives, but how do I know whether these assumptions are correct? Aside from testing with

users, there is no other adequate way to judge the effectiveness or usefulness of these learning

tools; heuristic evaluations may be able to address minor UI problems here and there, but it is

absolutely necessary to involve users in an iterative process to come up with a well polished and

final design – in this case, users would be current and future CMPT 711 students. More

specifically, it is necessary to:

1.) Interview or survey users to see what algorithms covered in a particular topic are the

most troublesome.

2.) Create a prototype (paper prototype initially) that attempts to facilitate the learning of

said troublesome algorithms.

3.) Gauge the effectiveness of the prototype by testing it with users – this involves a

qualitative study of what users feel are strong and weak points of the prototype.

Ideally, it would be preferable to observe and record users trying to accomplish

certain tasks with the prototype – for example, trying to figure out the complexity of a

certain algorithm with predefined inputs.

4.) Refine and reiterate the prototyping process until there is a certain confidence that the

application is useful and user friendly, based on the initial defined objectives.

 Unfortunately, due to time constraints, none of these steps were accomplished; while I

myself am a current student of CMPT 711 and the tools are deemed to be effective for my own

uses – for example, in studying for the midterm – this is a biased metric. However, the tools

developed are more than adequate initial prototypes that can be easily refined with one or two

rounds of observational user testing with a few users; as such, the most important and necessary

extension to this project would be to thoroughly test these learning tools with users. In their

current state, the learning tools will most likely help students better understand the course

material, but not quite possibly in the most user-friendly way possible.

P A G E 15

9. CONCLUSIONS

 While three visualizations for three different topics – Restriction Mapping, Motif

Finding, and Pairwise Sequence Alignment – were developed, they are merely prototypes in

creating a final suite of polished learning tools. However, they are steps in the right direction in

making the course material in CMPT 711 more interactive and accessible for students; while

extensive user testing will be necessary to determine the feasibility and effectiveness of these

tools, these prototypes in conjunction with the lecture slides and textbook should still be at least

as effective than learning from just text-based course material alone.

 10. REFERENCES

1. Jones, N. and Pevzner, P., “An Introduction to Bioinformatics Algorithms,” MIT Press,

Cambridge, MA, 2004.

2. Layman, L., Cornwell, T., and Williams, L., “Personality Types, Learning Styles, and an

Agile Approach to Software Engineering Education,” proceedings of ACM Technical

Symposium on Computer Science Education (SIGCSE „06), Houston, TX, 2006, pp. 428-

432.

3. Wiese, K. C., “An Introduction to Bioinformatics Algorithms”, Lecture Notes for CMPT

441/711, Simon Fraser University, 2011.

4. Topley, K., “JavaFX Developer's Guide,” Addison-Wesley Professional, 2010.

5. JavaFX: http://javafx.com, accessed February 19
th

, 2011.

6. Eddy, S. R., “What is dynamic programming?”. Journal of Computational Biology

(2004), Volume 22, Issue 7, pp. 909-910.

7. Norman, D. A., “The Design of Everyday Things,” Basic Books, 2002.

8. eNode, “Model-View-Controller Pattern,” (2002).

http://www.enode.com/x/markup/tutorial/mvc.html, accessed April 24
th

, 2011.

