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1.  RESEARCH QUESTION 

 Bioinformatics is an interdisciplinary field, drawing expertise from many different areas 

of computer science, molecular biology, biochemistry, and other sciences.  However, a 

fundamental understanding of the algorithms and workings behind the techniques and tools used 

in this field is crucial for success.  Because of this, CMPT 711 is a required course for students at 

Simon Fraser University intending to pursue a degree in Bioinformatics; it is a course with a 

strong emphasis on the theoretical and algorithmic side of computing science.  Unfortunately, 

due to its interdisciplinary nature, some of these students may not have had any prior formal 

training in computing science, making much of the course material difficult to understand.   

 Given the complexity of the algorithms covered in this course, is there an effective and 

efficient alternative method to present this information so that most students can build upon and 

solidify the concepts they learn during lectures?  More specifically, is it possible to visualize 

these algorithmic concepts in such a way that students who aren‟t naturally adept at learning 

from lecture slides and textbooks[2] can do so more easily?  

2.  OBJECTIVES 

 As stated in the previous section, the main problem I addressed in my project was to 

make the more difficult algorithms discussed in CMPT 711 easier to understand for students 

without a strong background in computing science.  I accomplished this by developing learning 

tools which allow students to interactively run through bioinformatics-related algorithms step by 

step while simultaneously showing what the algorithms (and its related data structures) are doing 

with strong visual cues.  The most challenging aspect to this project was in reinterpreting the 

algorithms in such a way that it is easily comprehensible to students while still maintaining the 

integrity of the algorithms itself.   

In my project proposal, I initially proposed three primary objectives for the project: 

1.)  The relevance of the tool for current and future students of CMPT 711. 

2.) The correctness of the tool in portraying how a specific algorithm works. 

3.) The effectiveness of the tool in helping students understand and analyze the runtime of 

difficult algorithms. 

 

 However, after careful deliberation, further refinements on these objectives were made.  

Due to the importance yet trivialness of the first objective, it was delegated as a preliminary 

objective – while ample thought was given in choosing the algorithms that the learning tools are 

built upon, the number of “difficult” algorithms introduced in each topic covered were few, and 

thus these decisions were relatively simple.  Furthermore, the second initial objective – the 

correctness of an algorithm – while important, should be an implied characteristic of the 
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effectiveness of the learning tools developed; an incorrect interpretation of an algorithm would 

clearly result in an ineffective learning tool, and thus the objective itself is redundant.   

  

 With these thoughts in mind, the following four refined objectives were identified prior to 

the development of each learning tool and were the primary considerations during each tool‟s 

initial design process – most design decisions were based on fulfilling these objectives. 

 

Preliminary Objective:  The learning tools developed should cover one difficult algorithm 

from three of the topics covered in the course.  

 

 As mentioned previously, the learning tools should be based on  difficult algorithms 

chosen from the topics taught in CMPT 711.  In this semester‟s course offering, five of the 

following topics were covered:  Restriction Mapping, Motif Finding, Genome Rearrangements, 

Pair-wise Sequence Alignments, and Multiple Sequence Alignments.   

 

 A difficult algorithm should be defined one that is the most complex in its respective 

topic, or one that is somewhat complex yet fundamental to the understanding of more 

complicated subsequent topics.  The associated objective in the project proposal assumed that 

eight topics would be covered by the end of this course, and as such the initial optimistic 

estimate was that seven learning tools would be developed for these eight topics.  Unfortunately, 

due to time constraints and unexpected difficulties, this objective has been refined to focus on 

only three learning tools for these five topics. 

 

Objective 1:  The learning tools should be effective in portraying how an algorithm works. 

 

 This objective is a difficult metric to quantify:  effectiveness, in this context, can be 

generally defined as whether a student using the tool will be able to learn what an algorithm is 

doing at each step.  More specifically, the tool can be deemed to be effective if the  tool portrays 

the material in a more useful or convincing manner than via the lectures and the textbook alone.  

Do note, however, that this objective does not imply that the tools are meant to be substitutes for 

conventional teaching methods – they are merely meant to supplement the course material, not 

replace it.  In this vein, the learning tools should effectively show what an algorithm is doing at 

each step, but not why it is doing it – the onus of algorithmic analysis is placed on the course  

instructor and is beyond the scope of this project. 

 

 To create an effective learning tool for an algorithm, it is imperative that careful analysis 

of the algorithm be performed such that its most crucial aspects – for example, its underlying 

data structures, its decisions made at each step, and its computational complexity – are portrayed 

efficiently with its corresponding ideal visual representations.  Moreover, the tool must also be 

aware of information overload: many of the algorithms discussed in CMPT 711 actually have 
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many intricate details happening at each algorithm iteration, and the more information that is 

portrayed on the screen at any given time leads to an overall ineffectiveness of the whole 

interface. 

 

 Since the learning tools are intended to supplement the lectures and text, it is important 

that the tools follow the way the algorithms are portrayed there.  A severe disconnect between a 

learning tool‟s interpretation of the algorithm and how an instructor chooses to teach the material 

will undoubtedly lead to confusion; an effective tool is one that causes the least amount of 

ambiguity as to how an algorithm actually works, without contradicting the way the material is 

initially taught to the student.    

 

Objective 2:  The learning tools should work for a variety of different inputs and allow a 

student to traverse from algorithm iteration to iteration. 

 

 The justification for this objective is that this encourages students to explore an 

algorithm‟s inner workings – if a student was restricted to only a few sample inputs, they would 

be unable to try to see on their own when an algorithm would perform admirably and when it 

would perform poorly (this is the next objective, Objective 3) – for example, many algorithms 

perform exponentially worse when the input size increases linearly:  it is imperative to allow for 

such inputs so that students can understand these failures.   

 

  Furthermore, by allowing a student to efficiently traverse from step by step on their own, 

they will be able understand how an algorithm works at their own pace; the ability to backtrack 

whenever necessary, or quickly revert back to an algorithm‟s initial or completed state 

encapsulates a variety of different uses for the tool aside from its original intention – for 

example, a student may be able to use the tool to check whether their handwritten 

implementation of an algorithm is correct. 

 

Objective 3:  The learning tools should show the strengths of weaknesses of each algorithm. 

 

 This objective focuses on the actual complexity of an algorithm; ideally, the strengths and 

weaknesses of each algorithm should be implicitly shown via the learning tool – that is, for some 

inputs, it should be abundantly clear when an algorithm performs poorly.  The basis for this 

objective lies in a shortcoming with many of the examples shown for these algorithms in both the 

textbook and the lectures; for example, in the Branch and Bound algorithm for the Partial Digest 

Problem, trivial, almost best-case inputs are used to illustrate how the algorithm works.  Without 

understanding why or when an algorithm may perform poorly, a student may arrive at an 

incorrect notion regarding the effectiveness of an algorithm; although formal runtime analyses 

such as the use of Big-O notation attempt to illustrate this, actual practical examples drive the 

point home for students who are not familiar or particularly comfortable with theory. 
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3.  METHOD 

 As mentioned previously, the three primary objectives were referred to throughout the 

design process of each learning tool.  To fulfill the first preliminary objective, three learning 

tools were developed for the three topics – Motif Finding, Restriction Mapping, and Pairwise 

Sequence Alignment – corresponding to the Branch and Bound Algorithm for the Median String 

Problem, the Branch and Bound Algorithm for the Partial Digest Problem, and the Dynamic 

Programming Solution to the Global Pair-wise Alignment Problem.  The justification for 

choosing these algorithms will be discussed in their own respective sections.   

 Of particular note, a learning tool was not developed for the Genome Rearrangements 

topic as the algorithms covered in those lectures were relatively trivial – the most difficult 

algorithm was ImprovedBreakpointReversalSort, which requires simply defining breakpoints and 

increasing strips and can be easily replicated and understood by identifying them on paper.  On 

the other hand, while Multiple Sequence Alignment was one of the more difficult topics 

presented in the course, it was covered hastily during the last week of the semester, and as a 

result there was not enough time to develop a fully fledged tool for it. 

 For each learning tool developed, it was important that clearly written instructions were 

given to the student at each step of an algorithm, explaining what it is doing on the off-chance 

that the visualization is unclear.  Each learning tool will now be discussed in detail, highlighting 

how they tackled the objectives stated previously. 

 

3.1  METHOD:  MOTIF FINDING 

 The algorithm that was focused on for the Motif Finding topic was the Branch and Bound 

Algorithm for the Median String Problem.  Two different approaches for finding motifs were 

covered in this topic – the first by analysing the search space of motif starting positions in each 

sequence (Motif Finding), and the second by analysing the search space of possible candidate l-

mers (Median String).  As will be discussed shortly, the Median String representation of the 

problem was chosen as it allowed for a more natural way to visualize the algorithm‟s steps – 

furthermore, the median string approach is a much more practical algorithm as the search space 

does not grow alongside the length of the input sequences. 

For the learning tool to be effective, there were three main factors that needed to be considered: 

1.) How the algorithm goes about finding l-mers to analyse, and how it bypasses 

pointless l-mers. 

2.) What the algorithm actually does when it is analysing an l-mer – that is, how does it 

calculate the total distance for an l-mer? 
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3.) The effectiveness of the bounded approach – that is, how many actual l-mers are 

bypassed as the algorithm progresses?  The number of analysed prefixes? 

 

 This learning tool was the most difficult to develop out of the three – not in terms in 

technical difficulty, but in terms of figuring out the best way to interpret the algorithm‟s 

decisions at each step.  At times, Objective 1 and Objective 2 from Section 2 were in direct 

conflict with another: the algorithm relies heavily on the use of a prefix tree, which is a fully 

balanced tree with        nodes, where   is the input target l-mer length.  With a l-mer length 

of    , which is a reasonable input size, this corresponds to 262143 nodes in the prefix tree, 

making it extremely difficult to provide a visualization where screen real estate is heavily 

constrained.  Even initial attempts in visualizing a prefix tree with l-mers of length     proved 

to be extremely difficult without a sophisticated zooming mechanism, but even then, students 

may be confused when the algorithm is zoomed-in and is shifting from node to node. 

 

 Furthermore, another problem is that for students without a formal theoretical 

background, tree traversals may not overly intuitive; even though a tree-based structure is 

familiar to most computer scientists, the prefix tree itself and the algorithm‟s operations on the 

tree – NextVertex() and BypassVertex() –  cause confusion, even to graduate students in CS such 

as myself.  In actuality, there is a more natural and habituated way to represent these operations 

in a list-based structure:           

 

1.)  NextVertex() essentially increments a number in the usual way with carry-overs.  For 

example, applying NextVertex() in succession to a number such as 189 will result in 

190, 191, 192, and so forth.  With the added complexity of number prefixes, a small 

modification would be made such that prefixes are “counted” as an additional digit.  

For example, 189 would result in 19-, 191, 192, 193, and so on.    

2.) BypassVertex() is similar to NextVertex(), but is utilized on prefixes only, and with 

the last non-prefix digit being incremented.  For example, applying BypassVertex() in 

succession to 18- would become 19-, 2--, 3--, 4--, and so on.  

 Thus, a decision was made to present the prefix tree in the algorithm as a list of traversals 

along the tree.  This further allows a student to easily identify l-mers of particular interest:  for 

example, l-mers that are found to be temporary candidates for the actual motif, could be easily 

highlighted in the list to denote importance.  Furthermore, each step of the algorithm can be 

naturally defined as an l-mer; traversing through the steps of the algorithm would be no different 

than traversing through each of the analysed l-mers in the prefix tree (Objective 2).  As an added 

benefit, the list-based approach allows the student to intuitively see that the number of Bypasses 

increases significantly as the algorithm progresses. 

 To show what the algorithm actually does when it is analysing an l-mer, it was necessary 

to show where the best alignment in each sequence a candidate l-mer is, and its corresponding 
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number of mismatches (hamming distance).  This was a facet that was clearly conveyed through 

the lecture slides and the textbook, and as such, a similar representation is used in the learning 

tool.   

 

 To fulfill Objective 3 – that is, showing the strengths and weaknesses of the algorithm – 

it was necessary to provide adequate visual feedback as to how many prefixes and l-mers are 

analysed, how many are bypassed, and what the total number of possible l-mers are – this clearly 

conveys the importance of the bounded approach over the bruteforce approach.  This was done 

both via color codes in the l-mer traversal list and via text labels showing these properties at each 

step.  In combination with Objective 2, students would be clearly able to see that for large input 

sizes (e.g.      or with a large number of long input sequences), while the bounded approach 

is able to shave off a considerable number of l-mer analyses, there are still a significant number 

of prefixes that need to be analysed. 

 

3.2  METHOD:  RESTRICTION MAPPING 

 The algorithm that was deemed to be the most difficult in the Restriction Mapping topic 

was the Branch and Bound Algorithm for the Partial Digest Problem.  Given that the only other 

algorithm that was covered in this topic was the brute force approach, this was a trivial decision. 

 The algorithm itself is straightforward and was used as an initial testbed for development 

techniques for subsequent learning tools.  The algorithm was covered in detail in the lecture 

slides with a relatively simple visual representation of the restriction map shown for each 

remaining length insertion into the map, as shown in [Figure 0]. However, this visualization 

only works well when the length chosen at each step actually fits (i.e. no backtracking is 

involved); it does not take into account “in-progress” length decisions, nor does it take into 

account the branching nature of the algorithm and what can happen when an incorrect decision is 

made.   

 
[Figure 0]:  Lecture slides’ visual representation of the Restriction Map 

 As stated in Objective 2, students should be able to easily traverse from algorithm 

iteration to iteration; however, it was difficult to decide on a proper granularity for each step.  If 

a step ignores the algorithm‟s decision making process – that is, a step only shows a length being 

placed on either the left or right side of the restriction map – the student may be to be confused 

as to how and why a length‟s position on the restriction map is inferred.  Furthermore, it should 

be abundantly clear what it means for a length to „fit‟; the additional lengths created by adding a 

singular length to the restriction map should be shown, and if these additional lengths are not 

part of the available lengths left, then the singular length would not fit.  In this vein, a step in the 
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learning tool was defined as separate decisions made by the algorithm, with additional steps for 

actual length placements. 

 To account for the need to visualize lengths that are under consideration of being placed 

on either the left or the right of the restriction map – that is, to show the student what additional 

lengths would be created by the placement of a specific length – a 2-dimension map was adopted 

in the learning tool.  The extra dimension allows us to convey length placement attempts via the 

use of solid colors, and actual length placements via solid lines as in [Figure 0].   

 To account for the need to visualize „poor‟ decisions made by the algorithm, a colored 

decision tree was used, where a left branch on the decision tree infers that a length was placed on 

the left side of the restriction map, and a right branch infers that a length was placed on the right 

side of the restriction map.  Without formally portraying the decisions and backtracks the 

algorithm makes, it is extremely difficult to understand why the algorithm has an exponential 

runtime, violating Objective 3.  Furthermore, since recursion is a difficult topic for many 

students, the learning tool needs to be abundantly clear where each visual step corresponds to in 

the overall algorithm in order to adhere to Objective 1; this was accomplished by highlighting 

specific line numbers in the algorithm pseudo code provided in the lecture slides and textbook at 

each step. 

3.3  METHOD:  PAIR-WISE ALIGNMENTS  

 The algorithm that was focused on for the Pair-wise Alignment topic was the Dynamic 

Programming solution for the Global Pair-wise Alignment Problem. More specifically, a 

learning tool was developed for the simplest variation of the problem – the Longest Common 

Subsequence problem – where only nucleotide matches influence the score of an alignment.  The 

rationale behind choosing this simple algorithm to visualize is that all other algorithms in the 

same topic (Chapter 6 in [1]) utilize some variation of this underlying framework – for example, 

the second solution covered is based on the same algorithm but with penalties based upon a 

simple lookup in a scoring matrix, and the most complicated algorithm incorporates affine gap 

penalties, which is also just a simple modification of the underlying scoring mechanism.  

Understanding fundamentally how the most basic sequence alignment works is imperative for 

success in this and subsequent topics; more specifically, while dynamic programming is a 

technique that is well known for most computer scientists, students who have never utilized this 

technique may misunderstand or misinterpret the algorithm, compounding the issue when 

alignments are generalized past paired sequence comparisons. 

 As dynamic programming is best visualized using a tabular structure, Objective 1 was 

accomplished by closely following the textbook‟s representation of the score matrix with 

backtracking during the creation of this learning tool.  The algorithm itself is straightforward – 

given  - and  -long nucleotide sequences, an        table is initialized with scores of zero in 

the first row and first column.  Then, each cell in each row is populated based on the scores of its 
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neighbours, and a backtracking pointer is used to point to the neighbouring cell that it inferred its 

score from.  When the table is finished populating, a backtrack path is generated using the 

backtrack pointers starting from the       cell, and a global alignment is inferred using this 

path.  However, the algorithm presented in the textbook does not result in the same backtracking 

pointers generated via the examples in the same textbook; the algorithm described in the 

textbook results in backtrack arrows being assigned differently in tie-breaking situations that do 

not correspond to the example tables in the textbook.  Ideally, if there are multiple optimal 

alignments (i.e. same LCS length), the learning tool‟s dynamic programming table should be 

identical to the examples shown in the textbook – this was remedied by modifying the algorithm 

slightly when it assigns backtracking pointers in tiebreaking scenarios. 

 Similarly, there is ambiguity in the last step of the algorithm in the lecture slides.  The 

formal LCS algorithm only prints out the nucleotide matches between the two sequences 

recursively – how the actual backtracking path is converted into a global alignment is unclear.  

While it is true that insertions and deletions can be inferred simply by the directionality of each 

backtracking pointer, why this is the case is vague and insufficient for a learning tool.  

Fortunately, the textbook uses a different representation of the backtrack path to more easily 

convey how an alignment is created ([1], pp. 170), and thus this representation was used in the 

final steps of the learning tool. 

 Another problem faced was that both the lecture slides and the textbook do not utilize 

backtrack pointers for the first row and the first column of the dynamic programming table – this 

leads to only a partial alignment when the input sequences are not ideal.  For example, the two 

sequences “ACG” and “TTTACG” would result in a backtrack path that creates an alignment of  

“ACG” and “ACG”, not the full alignment of “---ACG” and “TTTACG”.  This was corrected by 

creating initial backtrack pointers for the first row and first column pointing back to the       

cell, as shown in [6]. 

 Since it is important that students are able to trace through the steps of the algorithm 

manually (Objective 2), choosing an ideal step granularity is an important concern.  Surely, 

populating the entire table in one step (e.g. as shown in the textbook) trivializes the problem, and 

the generation of each cell of the table should be clearly defined as singular steps.  The learning 

tool addresses this by counting the table initialization as one step, each subsequent table entry 

population as an additional step, the identification of the backtrack path as one step, and the 

generation of the alignment as several steps, with each step corresponding to an entry in the 

backtrack path.  As an additional benefit of this step definition, students would be able to clearly 

see the amount of time and space it takes to analyse each step of the   by   table, and should be 

able to infer that further improvements can be made onto the algorithm itself (Objective 3) – for 

example, that it isn‟t entirely necessary to store the whole table in memory to calculate the best 

possible alignment.   
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4.  TOOL 

The learning tools were written in Java, and used Netbeans 6.9‟s GUI builder for developing the 

user interface of two of the three tools.  The Model-View-Controller pattern[8] was used 

extensively throughout development, which decouples the actual algorithm computations and the 

GUI.  A structural diagram of major components for the learning tools is provided in [Figure 5].   

 

[Figure 1]:  Structural Diagram of Major Components 

 The main class for each learning tool simply creates an InputUI instance, which shows 

the initial GUI for querying user input for the underlying algorithm.  Once the user has 

confirmed the input, the problem is solved using the corresponding algorithm.  While the 

problem is being solved, a snapshot of the algorithm is taken at each step (which includes 

important variables utilized later in the visualization), and hand written instructions are also 

compiled describing what the algorithm is doing.  These snapshots are stored in an ArrayList of 

AlgStep objects for the Restriction Mapping and Motif Finding learning tools, and, for efficiency, 

as an array of instruction Strings for the Pairwise Alignment learning tool.  The actual Main GUI 

is then created and only has access to these snapshots generated by the algorithm – it then 

portrays these snapshots in a visual manner to the user, and allows them to traverse through the 

snapshots as requested.    

Main Class 

Show Input UI 

Input UI 
Gathers user input 

Solver Class 
Runs specified algorithm and 

takes a snapshot of relevant 

variables at each “important” 

step with word-based 

instructions.  

Interpret/check 

user input and 

feed into Solver 

Main UI 
-  Allows user to go through 

each “snapshot” generated 

by the Solver class. 

- Creates visualizations based 

on the variables gathered at 

each snapshot. 

-  Depicts formatted 

instructions to the user. 

Forward algorithm 

snapshots + instructions 
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5.  USER  GUIDE 

 The learning tools have been precompiled and can be launched in the by double-clicking 

PartialDigest.jar, MedianString.jar, or PairwiseAlignment.jar. Alternatively, using Netbeans 

6.9, it is possible to select each learning tool‟s folder as a project and recompile it if necessary.  

Since the learning tools are meant to be user friendly, simple default inputs are provided at 

program startup, and randomized input can be generated using simple dialogs.  Using these 

learning tools should be relatively self explanatory, given its intended purpose.   

6.  SAMPLE  SESSION 

 [Figure 2] shows an instance of the learning tool for the Restriction Map topic, with the 

branching tree visualization tab visible, which highlights where lengths have been placed in the 

past and removed (in gray) and are currently placed (in red).  Users are only able to navigate 

through the algorithm using only a horizontal slider, purposely constraining the amount of 

possible actions a user can perform.  The in-progress restriction map and current length decisions 

are shown with a corresponding visual representation. 

 
[Figure 2]: Learning tool for the Restriction Map topic 
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 [Figure 3] shows an instance of the learning tool for the Motif Finding topic.  As 

discussed in the methodology section, a list of l-mers and prefixes being traversed is shown with 

color codes denoting algorithm decisions at each particular step.  A step outlined in red denotes a 

prefix that is bypassed, green denotes an l-mer that was recorded as having the best total distance 

up to that point, and grey denotes a prefix that was not bypassed.  At a specific step, the user is 

shown the number of l-mers analysed and bypassed, as well as the prefixes analysed up to that 

point.   

 To illustrate how the total distance for the l-mer at a current step is calculated, the 

sequence visualization panel shows the best possible alignment (i.e. minimizes the hamming 

distance) for the l-mer in each sequence.  Mismatching nucleotides are depicted in red.  

Furthermore, the best possible l-mer found up to that step is shown below the sequence 

highlighted in green, and similarly nucleotide mismatches are highlighted in red.    

[Figure 3]: Learning tool for the Motif Finding topic 

  

 [Figure 4] shows an instance of the learning tool for the Pair-wise Sequence Alignment 

topic, with the last step of the algorithm being currently selected.  The dynamic programming 

table is shown on the right portion of the screen, and each cell shows the best possible score for 

the two subsequences at that cell, as well as the backtrack path leading up to that cell.  This 

tabular representation is based heavily upon the examples shown in the textbook ([1], pp. 173).  
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At predetermined intervals, highlighted with a marking on the algorithm step slider, the tool goes 

through the table‟s initialization step, each cell‟s population step, and the actual alignment 

generation steps. 

 The backtrack path corresponding to the final alignment is shown in a panel at the bottom 

portion of the tool.  This representation is also drawn heavily from the textbook ([1], pp. 170), 

and the red cell indices denote insertions and deletions. 

 
[Figure 4]: Learning tool for the Pair-wise Sequence Alignment topic 

 

7.  LISTING 

 The Java code for each learning tool is placed under its respective /src/ directory.  The 

code is documented in-line, and non-trivial functions have method comments.  Only the standard 

libraries java.util.*, java.awt.*, and javax.swing.* were used, and all other code is hand-written 

with no external help.  A full file listing is provided in listing.txt in the root directory. 
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8.  RESULTS AND EXTENSIONS 

Due to the nature of my project, I emphasized the objectives and methodology sections moreso than the results of my 

project; the only results I have are the tools I developed, and user testing is necessary for more in-depth discussion. 

 Prior to the creation of the learning tools, the objectives in Section 2 were defined and 

referred to throughout the design process.  However, they are high level concerns and give a 

sense of what needs to be developed, but not exactly how they should be portrayed on the screen.  

When actually writing the GUI-centric code, Donald Norman‟s fundamental principles of 

design[7] were used as a guide for most design decisions such as widget placement and choice.     

 In the end, I came up with what I felt were the best solutions in accomplishing the initial 

objectives, but how do I know whether these assumptions are correct?  Aside from testing with 

users, there is no other adequate way to judge the effectiveness or usefulness of these learning 

tools; heuristic evaluations may be able to address minor UI problems here and there, but it is 

absolutely necessary to involve users in an iterative process to come up with a well polished and 

final design – in this case, users would be current and future CMPT 711 students.  More 

specifically, it is necessary to: 

1.) Interview or survey users to see what algorithms covered in a particular topic are the 

most troublesome. 

2.) Create a prototype (paper prototype initially) that attempts to facilitate the learning of 

said troublesome algorithms. 

3.) Gauge the effectiveness of the prototype by testing it with users – this involves a 

qualitative study of what users feel are strong and weak points of the prototype.  

Ideally, it would be preferable to observe and record users trying to accomplish 

certain tasks with the prototype – for example, trying to figure out the complexity of a 

certain algorithm with predefined inputs.   

4.) Refine and reiterate the prototyping process until there is a certain confidence that the 

application is useful and user friendly, based on the initial defined objectives. 

 Unfortunately, due to time constraints, none of these steps were accomplished; while I 

myself am a current student of CMPT 711 and the tools are deemed to be effective for my own 

uses – for example, in studying for the midterm – this is a biased metric.  However, the tools 

developed are more than adequate initial prototypes that can be easily refined with one or two 

rounds of observational user testing with a few users; as such, the most important and necessary 

extension to this project would be to thoroughly test these learning tools with users.  In their 

current state, the learning tools will most likely help students better understand the course 

material, but not quite possibly in the most user-friendly way possible.   
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9.  CONCLUSIONS 

 While three visualizations for three different topics – Restriction Mapping, Motif 

Finding, and Pairwise Sequence Alignment – were developed, they are merely prototypes in 

creating a final suite of polished learning tools.  However, they are steps in the right direction in 

making the course material in CMPT 711 more interactive and accessible for students; while 

extensive user testing will be necessary to determine the feasibility and effectiveness of these 

tools, these prototypes in conjunction with the lecture slides and textbook should still be at least 

as effective than learning from just text-based course material alone.   
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