

GREEN PHONES PHASE 1: PROJECT REPORT
Adrian Kwok (#200136359)
Zachary Blair (#200106230)

Benjamin Saunders (#301111447)

CMPT 885
Professor Shriraman
August 22nd, 2011

Page 2 of 14

1. INTRODUCTION

For our semester-long project for CMPT885, we contributed to Professor Shriraman’s and Professor Fraser’s

Green Phones project, developing the underlying framework for which future work can be built upon. The

Green Phones project aims to understand and concretely define factors that can influence overall power

consumption in a modern Android-based smartphone, with the ultimate goal of being able to provide strong

power consumption estimates for any given application available on the Android Market. Overall, the project

requires work on several different components to formulate a successful, publishable paper. At its bare

minimum, it is necessary complete the following phases:

1. Gather sufficient power consumption measurements while varying different resource loads to

develop an accurate power estimation model. This requires simulating many, many different inputs

(resource loads) and generating corresponding outputs (accurate total power consumption of the

phone). This was the entire focus of our work for the project;

2. Verify the correctness and quantify the total amount of error in the generated power estimation

model;

3. Given an Android application (e.g., from the Android Market[1]), be able to determine what resources

it uses, and how much, at a fine-grained level;

4. Utilize the application’s measured resources as an input to the developed model to provide an

accurate estimation of the application’s power consumption;

5. Compare different applications that accomplish the same task and see which are the most power

efficient.

As a result of working on this project, a number of future possible research avenues were also discussed:

a. Determining and comparing the effectiveness of different dynamic frequency scaling algorithms with

respect to minimizing CPU power consumption;

b. Concretely defining the benefits and drawbacks to the Android OS’s laissez-faire attitude with

resourced-based wake locks[2][3], especially with the proliferation of poorly written applications

available on the Android Market[4]. On the issue of user control, Wysocki[3] writes:

“Of course, processes using wakelocks can impact the system's battery life quite significantly, so the

ability to use them has to be regarded as a privilege that should not be given unwittingly to all

applications. Unfortunately, however, there is no general principle the system designer can rely on to

figure out what applications will be important enough to the system user to allow them to use

wakelocks by default. Therefore, ultimately the decision is left to the user which, naturally, is only

going to really work if the user is qualified enough to make the decision.”

c. Compare the power consumption of a specific component over a variety of different smartphones

when running the same application, to find out energy efficiency of newer or faster components.

While there is still a considerable amount of work to be done, we feel that we have made a significant

contribution to the project – we successfully and carefully developed fine-grained user-level component

stressors, managed to interface with a phone’s battery to gather accurate power measurements, and

essentially assembled all the necessary tools and test beds required to begin work on the next phase of the

project. listed above as phase 2. The amount of possible research that can be conducted on this topic is vast,

and considering the current paradigm shift to widespread handheld computing coupled with the physical

limitations of batteries, such research should be extremely relevant and important in the near and distant

future.

Page 3 of 14

2. STIMULATING RESOURCE LOADS (STRESSAPP)

To simulate a variety of different resource loads on most of the components on a conventional smartphone,

we built a user-level stress application – aptly named “StressApp”– on the Android platform. This application

allows researchers to specify time intervals for which each component is to be under a user-defined amount

of stress, with minimal additional overhead from component coordination. Moreover, StressApp

synchronizes with the hardware power logger – discussed in section 3. – for each stress run, simplifying the

data gathering process used to build a power estimation model. Coupled together with the ability to easily

create fine-grained state changes in a stress run, the power estimation model can be built very carefully and

accurately.

Figure 1: The StressApp GUI

The overall StressApp architecture comprises of a several major modules:

1. An input parser. The input parser reads in component stress run configurations and extracts states
comprising of requested component loads and state durations. This is further elaborated upon in
Section 2.1.

2. The application GUI thread/activity. The GUI simply allows the user to choose from a variety of
stress run configurations stored in the “stress” folder of the SD card and execute them, while showing
stress run progress and details. The GUI does not interact with any of the component stressors

3. Component stressor threads. In our application, each component is a separate thread, allowing for
multiple components to be stressed simultaneously, analogous to real-world smartphone usage. The
general stressor framework, discussed in Section 2.2, allows specific component stressors to easily
and efficiently switch between different stress states. Specific component stressor implementation
details are discussed in Section 2.3.

Page 4 of 14

4. The master thread. The master thread coordinates all of the component stressor threads: it creates
each stressor thread in its createStressors() method and places them into a HashMap data

structure, where each entry’s key is a user-defined enum from Components.java and the value its
corresponding stressor thread. This was purposely designed after feedback from Professor Fraser: if
a new component stressor is created, incorporating it into StressApp requires only adding two lines of
code in createStressors(), and a corresponding enum in Component.java. The master thread
only acts upon entries in the HashMap.

After creating all the component stressor threads, the master thread sleeps and waits for a stress run
to begin. When it is told to start a stress run by the GUI, it is interrupted from its sleep and, for each
state in the run, tells all stressors to change state, and then sleeps for the duration of the state –
effectively running each component at the desired load for that amount of time – before moving on to
the next state. Immediately after the init and immediately before the end states, the master thread
synchronizes with the hardware power logger described in Section 3 via a few HTTP GET calls. When
a run is completed, it goes back to sleep.

2.1 Input File Format & Parser

Test configurations are represented in a simple file format designed for easy extensibility and manual editing.

This was achieved by modeling after the common INI-style structured configuration format, which allows for

sufficient expressiveness for our purposes while permitting a straightforward approach to parsing without

compromising readability. Attempts were made to take advantage of existing parser code sourced from third

parties to implement this design, but initial research and experiments turned up no libraries both lightweight

enough to be easily included in the application and supportive of particular expressive needs of the format

such as retention of section ordering, and so a parser was manually implemented.

A test file consists of 2 or more sections each containing zero or more key-value

pairs, and any number of comments. A section is designated by a line beginning,

disregarding whitespace, with "[" and containing a subsequent "]", all other

contents of the line being ignored; in practice, this is a good place to put a one-

word title or description of the section. Key-value pairs consist of a line which is

not a section designator or a comment and which contains an "=" character. All

text before the "=", minus leading and trailing whitespace, is considered to be the

key, and all text after, similarly trimmed, is considered to be the value. If multiple

"=" are present on a line, the first occurrence is used. Note that key-values may

exist outside of a section by being placed before any section designator. Such key-

values are ignored. Finally, comments are lines whose first non-whitespace

character is a ";" or a "#"; these lines are also ignored. Note that comments are

only supported on otherwise empty lines.

The first and last sections have special meaning: the first is applied prior to the beginning of data logging (but

after a test run execution is requested), and the last is applied immediately after data logging terminates.

These are intended to be used to ensure that a test begins from a reproducible state, potentially including

changes such as full-screen image display which might make user interaction with the stressor program hard,

and returns the system to a sane state upon completion. All other states are executed in the sequence they

occur in the file, potentially being repeated some number of times before the end state is executed and

control is returned to the user.

[init]

brightness=100

time=0

[S0]

time=10000

brightness=10

cpu=10

audio=10

[S1]

time=10000

brightness=20

cpu=20

audio=20

[end]

audio=off

brightness=100

time=0

Example Input File

Page 5 of 14

Key-value pairs are used to transition individual stressors into a particular state at a given stage. Keys

correspond to a particular stressor, and values to the state desired for that stressor to enter into when the

current section is executed. As the full set of stressors needed cannot be predicted with certainty at this time,

it was decided to define values as arbitrary (one-line) strings, on the basis that this permits arbitrary data to

be easily passed to stressors as needed without requiring complex parser and configuration infrastructure.

Keys, however, are more constrained: each section may contain zero or one key-value pair for each entry in

the Component enum. For sections other than the first and last, this must include a "time" special (in that it

does not correspond to a stressor) key, whose value indicates the amount of time for which the states should

be sustained before executing the next section. The configuration loader is implemented in terms of this

enum, so the addition of further stressors should require no further changes other than the addition of a new

element to this enum, and, of course, the use of the corresponding key in some stressors. Interacting with the

configuration loader itself is straightforward: construct it on a file containing a configuration, and then query

initial, final, and normal states for arbitrary Components using getInitState(), getEndState(), and

getState() respectively, with normal state indexes ranging from zero to one less than getNumStates().

2.2 Stressor Framework

Stressors themselves are subclasses of the Stressor class, which must override the applyState()and

stress() methods. The applyState() method is called on a string obtained from the value of a key-

value pair from a test configuration input file, and it must configure the stressor such that the next call to

stress will invoke the desired behavior. Note that the string is visible only to applyState(), and may safely

be modified without side-effecting other code. applyState() must not perform any actual stressing itself,

as calls to it may occur when action is not actually desired. However, it should perform any necessary parsing

of the configuration string. The stress() method must take the action implied by a given state, such as CPU

loading or transfer of data over the network. It must also either check the interrupt status of the thread by

inspecting the return value of interrupted() frequently and throwing an InterruptedException

when it is true, or by performing calls (such as sleep or certain I/O methods) which are known to themselves

throw InterruptedExceptions when their thread is interrupted. This returns control to the superclass,

which manages communication between the stressor thread and the master thread before resuming stressing

if appropriate. This approach was used to help simplify stressor implementation by allowing blocking I/O

and sleeping to be used freely, as thread interruption tends to abort these operations.

The master thread interacts with the stressor threads through the begin(), end(), running(), and

changeState() methods. The first two cause calls to stress() to begin and cease occurring,

respectively, while running() simply indicates whether stress is currently being (or soon to be) called, and

changeState() causes applyState() to be invoked on a copy of the supplied string in the stressor

thread. Note that it is possible for changeState() to be called more rapidly than the child thread can

invoke applyState(), potentially resulting in intermediate states being skipped. However, if stressors

check the interruption flag with sufficient frequency this should only occur when the time interval between

two calls to changeState() is sufficiently small that the skip makes little measurable difference. Also note

that, as all overrideable methods are executed in the stressor thread – no locks or synchronization beyond

that already implemented should be necessary.

Page 6 of 14

Figure 2: State Diagram for Stressor Framework

This design allows individual stressor implementations to take full advantage of the generality of the test

configuration format and minimizes the amount of complexity necessary for new additions, all while

maintaining good performance and helping maintain the readability and simplicity, and thus long-term

maintainability, of the remainder of the StressApp implementation.

2.3.1 CPU Stressor

For the CPU stressor, we utilized a Linpack Java port from initially written in C[4]: Linpack based benchmarks,

such as LinpackX and IntelBurnTest, are applications widely used to stress PCs to verify overclocking

stability. Moreover, Linpack is more indicative of a true, heavy CPU workload compared to just repeatedly

adding a constant to a variable as done in PowerTutor[5]. With regards to previous discussion on the general

stressor framework, the CPU stressor simply keeps running a Linpack benchmark in the stress() method,

and changes the target CPU utilization variable in the applyState() method.

Since it is necessary to be able to vary the CPU utilization in developing a fine-grained power estimation

model, we spliced “checkpoints” into different areas of the Linpack Java code; these checkpoints – defined by

the checkThrottle() method – check to see if a predetermined time has elapsed since the previous

checkpoint, and if so, tells the thread to sleep to reach an average target CPU utilization level. As a contrived

example, a checkpoint can check if 1 second has elapsed, and if so, sleep for 1 second to achieve an average

CPU utilization of 50% over 2 seconds. More generally, the relationship between elapsed time, sleep time,

and target CPU utilization is given by:

Page 7 of 14

where . However, since we wish to develop a fine-grained power estimation model, with

an ideal polling interval of 200Hz, i.e. 5ms, some difficulties arise. Depending on the CPU the stressor is being

run on, the time between consecutive checkpoints may be so large that it is unable to reach a target CPU

utilization accurately – more specifically, if we aim for a 99% CPU utilization over 5ms, this would require us

to monitor for a period of 0.05ms (and sleeping for 4.95ms). On the other hand, if we aim for a 1% CPU

utilization over 5ms, this would require us to sleep for 0.05ms consistently, which seems to be a difficult task

for most operating systems[7][8][9].

To alleviate this issue, we require that the target CPU utilization be defined in steps of 10%, resulting in an

absolute minimum elapsed time of 0.5ms when the target CPU utilization is 10%, and the same time for

sleeps when the target CPU utilization is 90%. Since the minimum time interval is 0.5ms, we can simplify the

formula discussed previously, and the actual elapsed and sleep times used in the stressor is given by:

As a side note, there was some initial trouble with getting the stressor thread to sleep for values of less than 1

millisecond – necessary for a 5ms polling interval. While the generic Thread.sleep() method allows for

nanosecond input, it seemed to round up the nearest millisecond – to solve this, we instead relied on the

parkNanos() method offered by LockSupport in Java’s util.concurrent package[10], which seems to

work as expected[11].

2.3.2 Memory Stressor

For the memory stressor, we simply allocated a large array of 8-byte integers, and wrote to the array based

on two interaction types: sequential or random access. In both cases, the applyState() method simply

sets the stressor to one of these types, and the stress() method interacts with the array based on this –

careful attention was made to ensure minimal wasted CPU cycles (e.g., we only check for the access type once

in each stress run, as opposed to at every single element access). Furthermore, since array allocation is

costly, we only allocate the array once when the stressor is constructed, outside of any timing run.

Implementing sequential writes is trivial: it was implemented by simply writing through the entire array in a

single loop, while checking the thread’s interruption status at every element access. In the stress()

method, this corresponds to running the this loop infinitely many times.

On the other hand. random writes are a bit more tricky: the naive implementation would simply run a

random number generator at each access request and write to that random element – however, there is

considerable CPU overhead with generating random numbers, and we do not want it to influence our timed

results. Instead, we can create a single lookup table – created prior to all timing runs – and allocated to be the

same size as the array being accessed where each element in the lookup table corresponds to an index to

write to in the main array. For example, if the array we write to has 5 elements, then the lookup table could

look like the following:

4 2 0 1 3

This example lookup table would correspond to a write to index 4 of the main array, followed by a write to

index 2 of the main array, a write to index 0 of the main array, and so forth. A lookup table is preserved

Page 8 of 14

through the entire lifetime of the stressor, and the stress() method simply iterates through the lookup

table one element at a time, writing to the corresponding element in the main array, and checking the

thread’s interruption status. Generation of the lookup table is done in the stressor’s constructor, done by

shuffling an array with incrementing elements.

Note: while we have not formally implemented an SD card/storage stressor, it is simple to port the memory

stressor code over, as it is almost identical to what is necessary for those stressors.

2.3.3 Network Stressor

For the network stressor, we established two TCP connections to a remote server – usually tested under the

same LAN, and in many cases running on the same machine as the PowerLogger – and sent or received

multiple 1KB blocks per second over these connections. According to PowerTutor[12], the main determinant

of power consumption in WiFi are the number of packets sent per second, allowing the network adapter to

switch between low, medium, and high-power states – as such, we allow the user to request different

bandwidth (KB/sec) amounts on a state change.

For the remote server, we ultimately settled on using two simple netcat commands to receive and send

data: “nc -l 1234 > /dev/null”, which listens on port 1234 and, on receipt of data, forwards it to

/dev/null, effectively trashing it, and “nc –l 1235 < /dev/urandom”, which listens to port 1235,

and, on request, sends garbage randomized data efficiently. Unfortunately, for GNU-based variants of

netcat, a keep-alive function is not supported – meaning that once a client disconnects from the server,

netcat stops running – so we utilized simple bash scripts to loop the netcat command until it is manually

terminated, allowing for multiple network stressor runs without issue. These scripts are located in SVN

under the filenames “server_send.sh” and “server_receive.sh”.

When the network stressor (client) is created, it opens two sockets and handshakes via TCP with the remote

server; this is done so that the additional overhead doesn’t affect the results of a timed run. On the network

stressor’s applyState() function, we specify a requested bandwidth rate and network type (either

download or upload), and in the stressor() method we send or receive 1KB blocks using the two sockets

created previously. To make sure that we adhere to the bandwidth rate requested, we sleep for an amount of

time after each send/receive proportional to it – e.g.., if we desire a steady 100KBps rate, we would sleep for

some amount around 10ms per send/receive (not exactly 10ms since the act of sending/receiving the block

takes time as well) – and, if we end up sending too many blocks over a 1 second period, we sleep for an

amount of time that would put us back on track.

Note: the network adapter used, i.e. WiFi versus EDGE/3G, is determined by the phone’s setting prior at the

time of a stressor’s run. At this point in time, functionality to switch between adapters on applyState()

has not been implemented yet, but this is a simple addition as turning off the WiFi (which would, in most

cases, default the adapter to 3G) is fully supported through the SDK. Unfortunately, turning on or off 3G

manually is not something that is offered by the SDK.

Page 9 of 14

2.3.4 Audio Stressor

For the audio stressor, we loop a small 150KB, 2-channel, 44.1Khz sampling rate uncompressed white noise

audio file, at varying requested volume levels. As we wish to minimize CPU overhead, we utilize Android’s

simpler SoundPool library to play this file as opposed to the MediaPlayer library, which allows for much

more functionality but is overkill for our purposes. When the audio stressor is first created, we initialise and

load the audio file into a SoundPool. On an applyState(), we store the desired volume such that the

stressor can change the volume when stress() is next run – recall that an applyState() could occur a

long time before stress() is called, if we’re just setting initial states prior to a begin() call. In the

stress() function, we do the either the following once: the stressor either plays the audio file via

SoundPool at the desired volume, or if it’s already playing, it simply changes the volume. Afterwards, the

stressor just sleeps.

2.3.5 Brightness Stressor

Similar to the audio stressor, in the brightness stressor we simply record the desired brightness in an

applyState(), and set the brightness once when stress() is called, otherwise stress() just sleeps.

There were two problems observed while implementing this stressor:

 If the desired brightness is 0% (i.e. screen is off), the phone immediately goes to sleep and the whole

application stops. We used a PARTIAL_WAKE_LOCK[2] to try to remedy this problem, and while the

application continues to run and the screen is turned off, it is not possible to change the brightness again

afterwards. This problem has been documented online in numerous forums[13][14][15][16], and after much

searching an adequate solution still has not been found. As it stands, if a stress run wishes to turn off the

screen, it will have to do so for the remaining duration of the run.

 Only the main activity thread (i.e. UI/master thread) is able to change the brightness, and no other

thread is able to, otherwise an error is thrown. We remedied this by using a Handler to allow the

stressor thread to send a message to the main activity thread to set the actual brightness.

Page 10 of 14

3. LOGGING POWER CONSUMPTION (POWERLOGGER)

We developed an electrical power consumption measurement and logging infrastructure that enables

researchers to physically measure and log power consumption of the smartphone during various tests. The

logging infrastructure consists of three components: the battery gas gauge instrumentation board, the

interface board, and a logger application for the PC. The figure below shows the general configuration of the

logging infrastructure.

Figure 3: Power Logging Hardware Configuration

The battery from the smartphone has been removed from its chassis, and attached to the smartphone via

some wires that first pass through the battery gas gauge board. This was done so that the battery gas gauge

board can actually measure the battery voltage and current flowing into the smartphone. Using this voltage

and current information, the board is able to accurately estimate the amount of charge, measured in

Coulombs, that has flowed out of the battery into the smart phone, thereby providing an accurate estimate of

the remaining battery capacity.

3.1 Battery Gas Gauge Board

The battery gas gauge board, a Linear Technology 1496 Demo Board, is based on a LTC2942IDCB chip,

described by the Linear Technology data sheet as a "Battery Gas Gauge with I2C and 14-Bit ADC". The board

measures the battery current and voltage, and uses it to estimate the battery's power output[17]. By reading

the values of certain registers on the board via its I2C interface, our logger application can monitor the

phone’s power consumption with high accuracy.

Page 11 of 14

The board has an I2C/SMBus interface for communication with another board. The I2C/SMBus interface is a

two-wire system, with all devices connected in parallel to the wires, and both wires pulled-up with pull-up

resistors. The two wires, SDA and SCL, provide a simple interface involving a data line, and a clock line:

I2C Line Purpose

SDA (Serial Data Line) Used to transmit data. The wire is weakly pulled up by a pull-up resistor, so

that any connected device can pull it down to transmit.

SCL (Serial Clock) Controlled by the “Master” I2C device. Used to synchronize communication.

In addition to the I2C interface, the LTC 1496 Demo Board also provides a special pin for notifying external

board of events, such as when charging of a battery is complete.

Pin Purpose

~AL/CC (Alert Output or

Charge Complete Input)

Used to notify other chips of certain events, such as when the battery

has finished charging.

We didn't end up using that pin, and instead rely on the I2C interface exclusively.

3.2 I2C to USB Convertor Board

The battery gas gauge board only has an I2C/SMBus two-wire interface, which our PC cannot directly

interface with. Therefore, we used a FTDI UM232H Single Channel USB Hi-Speed FT232H Development

Module board to provide an interface between the battery gas gauge board’s I2C interface and the PC’s USB

(Universal Serial Bus) port.

The FTDI website provides several drivers for Windows, Mac, or Linux for interfacing with their UM232H USB

devices[18]. One set of drivers makes the device look like a normal serial "COM:" port, and another allows for

more fine-grained control using a proprietary API. The logger application uses the D2XX drivers available

from the FTDI website to acquire data from the LTC2941 board.

3.3 PC Logger Application

A major component of the logger infrastructure is an application running on a connected PC, which

continually communicates with the battery gas gauge board, and logs measured voltage, current, and battery

levels to a file.

We used the Qt framework[19] for the logger application's GUI, because it is cross-platform (Windows, Mac,

Linux), extensive, and also because of our familiarity with it. We created a logger GUI application, and have

committed it to the SVN repository under the "/PowerLogger" directory. The following is a screenshot of

what the program looks like on Windows XP.

Page 12 of 14

Figure 4: PowerLogger GUI (Graphs View)

The application provides a simple GUI for starting and stopping logging, and for clearing any previously

logged data. It also provides an interface for visualizing the data in a graph, or in a spreadsheet. In the

screenshot above, the “Graphs” tab shows the data in a graph, and the “Data Table” shows the 10 most recent

measurements in a table.

The battery gas gauge board only provides charge counter information, voltage information, and temperature

information. Therefore, the “Current” and “Power” data shown in the graphs had to be derived from

consecutive charge and voltage measurements.

Current is simply the rate of change of the charge counter, so it was derived using the following formula:

where and denote the nth and n-1th charge counter values, respectively, and and represent the

nth and n-1th timestamp values, respectively.

The “Power” graph is then derived from the current and voltage information using the following formula:

where vn is the nth voltage measurement.

Page 13 of 14

3.4 PC Logger Application: Remote Control Interface

The logger application also provides an HTTP interface for remotely starting, stopping, clearing, and saving

the log. This interface may be accessed using a standard web browser application like Firefox, Chrome, or

Internet Explorer, or by a custom application. The testing application on the Android phone, for instance,

connects to the logger application on the PC using this HTTP interface so that it can start and stop the logger

in synchronization with the tests.

The table below lists all the URLs that the logger application exposes. Sending an HTTP GET request for these

URLs will perform the corresponding function specified in the “Description” column of the table. Thus,

entering these URLs in the address bar of a web browser and pressing enter will cause the logger application

to perform the function corresponding to the URL entered. The logger application will return a short

confirmation string, such as “Logging started”, to the web browser in response.

URL Description

http://localhost/start?freq=NN The 'start' URL starts the logger. An optional “freq”
parameter can be passed in the URL to specify the frequency
at which to poll the battery gas gauge board. If no frequency
is specified, the frequency currently configured in the logger
application is used.

http://localhost/stop The 'stop' URL stops the logger.

http://localhost/clear The 'clear' URL clears the logged data, therby erasing the
contents of the data table and graphs in the GUI application.

http://localhost/save?name=log.txt The 'save' URL saves the currently-logged data to a text file as
a table of comma-separated values. The optional “name”
parameter is used to specify a file name. If no “name”
parameter is specified, a file chooser dialog will prompt the
user on the PC for a file name. The saved file can be opened as
a CSV file using Microsoft Excel or OpenOffice Calc for further
analysis.

Open Source Software Contribution
We could not find a suitable graph widget for the PC logger application, so we wrote our own graph widget,

and published the source code online so that other developers could use that widget for their projects.

Additionally, by providing the source online, any improvements that other users make to the code can be

incorporated into future versions of the PC logger application. The widget is available at [20].

Page 14 of 14

4. REFERENCES

1. Google, Inc., “Apps – Android Market”. Retrieved August 20th, 2011. Available at:

https://market.android.com/?hl=en

2. Google, Inc., “PowerManager | Android Developers”. Retrieved August 20th, 2011. Available at:

http://developer.android.com/reference/android/os/PowerManager.html

3. Wysocki, R. J., “An Alternative to Suspend Blockers”, November 24th, 2010. Available at:

http://lwn.net/Articles/416690/

4. Webster, S., “Poor education to blame for Android returns, not poor apps”, June 3rd, 2011. Available at:

http://reviews.cnet.com/8301-19736_7-20068744-251.html

5. Dongarra, J., Wade, R., McMahan, P., “Linpack Benchmark – Java Version”. Retrieved August 20th, 2011.

Available at: http://www.netlib.org/benchmark/linpackjava/

6. PowerTutor, “A Power Monitor for Android-Based Mobile Platforms”. Retrieved August 20th, 2011.

Available at: http://ziyang.eecs.umich.edu/projects/powertutor/powertutorplus.html

7. StackOverflow, “Sleep Less Than one Millisecond”, originally posted by “smink”, September 17th, 2008.

Available at: http://stackoverflow.com/questions/85122/sleep-less-than-one-millisecond

8. Defective Compass, “High Precision Sleep”, originally posted on September 1st, 2006. Available at:

http://defectivecompass.wordpress.com/2006/09/01/high-precision-sleep/

9. StackOverflow, “How accurate is python’s time.sleep()?”, originally posted by “Claudiu”, July 15, 2009.

Available at: http://stackoverflow.com/questions/1133857/how-accurate-is-pythons-time-sleep

10. Oracle Corporation, “LockSupport (Java Platform SE 6)”. Retrieved August 20th, 2011. Available at:

http://download.oracle.com/javase/6/docs/api/java/util/concurrent/locks/LockSupport.html

11. Hay in a Needlestack, “High Resolution Timer in Java 5”, originally posted by Gustavo M. D. Vieira,

August 28th, 2007. Available at: http://www.sagui.org/~gustavo/blog/code

12. Zhang, L., et. al., “Accurate Online Power Estimation and Automatic Battery Behaviour Based Power Model

Generation for Smartphones”, CODES+ISSS ’10, October 24-29, 2010.

13. StackOverflow, “Blank screen when restoring screenBrightness Android”, originally posted by

“thegreyspot”, July 21st, 2011. Available at: http://stackoverflow.com/questions/6783159/blank-

screen-when-restoring-screenbrightness-android

14. StackOverflow, “Calling hidden API in android to turn screen off”, originally posted by “David

Shellabarger”, December 9th, 2009. Available at:

http://stackoverflow.com/questions/1875669/calling-hidden-api-in-android-to-turn-screen-off

15. StackOverflow, “turn the screen on/off in Android with a shake”, originally posted by “The

WebMacheter”, March 6th, 2011. Available at: http://stackoverflow.com/questions/5214033/turn-

the-screen-on-off-in-android-with-a-shake

16. StackOverflow, “Android dim screen down problem”, originally posted by “Kneed”, June 8th, 2011.

Available at: http://stackoverflow.com/questions/6283555/android-dim-screen-down-problem

17. Linear Technology, “LTC2942 – Battery Gas Gauge with Temperature, Voltage Measurement”. Retrieved

on August 20th, 2011. Available at: http://www.linear.com/product/LTC2942

18. FTDI Chip, “Drivers”. Retrieved on August 20th, 2011. Available at:

http://www.ftdichip.com/FTDrivers.htm

19. Nokia Corporation, “Qt – A cross-platform application and UI framework”. Retrieved August 20th, 2011.

Available at: http://qt.nokia.com/products/

20. Blair, Z., “zblair/QSimpleTickerGraph”. Retrieved August 20th, 2011. Available at:

https://github.com/zblair/QSimpleTickerGraph

https://market.android.com/?hl=en
http://developer.android.com/reference/android/os/PowerManager.html
http://lwn.net/Articles/416690/
http://reviews.cnet.com/8301-19736_7-20068744-251.html
http://www.netlib.org/benchmark/linpackjava/
http://ziyang.eecs.umich.edu/projects/powertutor/powertutorplus.html
http://stackoverflow.com/questions/85122/sleep-less-than-one-millisecond
http://defectivecompass.wordpress.com/2006/09/01/high-precision-sleep/
http://stackoverflow.com/questions/1133857/how-accurate-is-pythons-time-sleep
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/locks/LockSupport.html%23parkNanos%28long%29
http://www.sagui.org/~gustavo/blog/code
http://stackoverflow.com/questions/6783159/blank-screen-when-restoring-screenbrightness-android
http://stackoverflow.com/questions/6783159/blank-screen-when-restoring-screenbrightness-android
http://stackoverflow.com/questions/1875669/calling-hidden-api-in-android-to-turn-screen-off
http://stackoverflow.com/questions/5214033/turn-the-screen-on-off-in-android-with-a-shake
http://stackoverflow.com/questions/5214033/turn-the-screen-on-off-in-android-with-a-shake
http://stackoverflow.com/questions/6283555/android-dim-screen-down-problem
http://www.linear.com/product/LTC2942
http://www.ftdichip.com/FTDrivers.htm
http://qt.nokia.com/products/
https://github.com/zblair/QSimpleTickerGraph

