
Energy-Performance Tradeoffs in Smartphone Applications

Adrian Kwok, Arun Bharadwaj, Zachary Blair, Arrvindh Shriraman, Brian Fraser
School of Computing Science, Simon Fraser University
{adriank, abharadwaj, zblair, ashriram, bfraser}@cs.sfu.ca

Abstract

Smartphones have become ubiquitous, making it impera-
tive that we account for their energy consumption and contin-
uously monitor active applications on these battery-powered
devices. Applications built for smartphones have varied hard-
ware resource and energy requirements; some applications
may only intermittently utilize the CPU, whereas others may
be both computationally and graphically intensive. The ran-
domness and interactivity of the applications also cause var-
ied power profiles.

In this paper, we analyze the power usage, performance,
and energy consumption of popular applications on the An-
droid platform. Our profiling system, AppLogger, is an ef-
ficient kernel-level event tracker that gathers resource-usage
information. It exhibits low overhead – on average 7% – and
logs events at context switch ensuring fine-grain observation
ability of up to 1000Hz. To monitor the power drawn from
the battery we developed a cost-effective (< $150), phone in-
dependent, and easily replicable energy gauge. Using this
framework we analyzed the effects of different CPU frequency
and voltage governors. While the conventional approach of
turning down hardware clock speeds saves power, it also in-
creases execution time and negatively affects overall energy
consumption and hence battery life. Running a browser with
the CPU at 1GHz consumes 251J of energy at 1.5W of power;
at 576Mhz, the phone consumes just 1.1W but requires 300J.
We also showed that the default Android frequency governor,
”Ondemand”, has minimal impact on power and gives mini-
mal energy savings (< 10%) compared to running the CPU at
its maximum frequency, with potential for improvement. Fi-
nally, we analyzed the average power consumed for differ-
ent application categories; outside of the games category, we
found that Facebook, Skype, and Adobe Reader were the three
most power hungry applications. We also observed signifi-
cant fluctuations in the instantaneous power requirements of
different applications, exposing the potential for fine-grained
dynamic power management.

1 Introduction
Today, users are in the midst of a major transition to smart-

phones and mobile devices for accomplishing many of their
daily tasks. Smartphones have brought with them new soft-
ware stacks and are enabling programmers of varied expe-
rience and expertise to develop applications; furthermore,
the applications that current mobile systems can support are
mainly constrained by the lifetime of the battery. It is im-

portant that we allow developers and end-users to understand
the energy and resource requirements of applications on their
smartphones.

Smartphone applications are highly interactive – allowing
for various forms of input – and employ rich GUIs; these ap-
plications are often designed using an event-driven methodol-
ogy to enable high concurrency and interactivity, and as we
show in Section 5, have varied resource requirements. Some
smartphone applications may only intermittently utilize the
CPU, whereas others may be both computationally and graph-
ically intensive and exercise many different hardware compo-
nents. Moreover, mobile platforms include many system ser-
vices that may be running in the background yet consuming
non-trivial amounts of energy.

In this paper, we characterize the power consumption, en-
ergy and performance profile of smartphone applications by
conducting studies on a widely used consumer phone, the
Google Nexus One. A key challenge with a complex multi-
level software framework is tracking the processes that per-
form work on behalf of the application and attributing re-
source usage. For example, when playing Angry Birds, Au-
dioTrackerThread is a separate process that handles audio
for the game while another process – PlaybackThread – pro-
vides rendering services. To overcome this, we developed
AppLogger, an OS-level logger based on the Ftrace mecha-
nism present in linux kernel. The OS-level framework helps
us track the events corresponding to the entire system, sup-
ports a cleaner implementation independent of changes to the
SDK, and most importantly exhibits very low overhead, en-
suring that applications are minimally perturbed by our log-
ging. Through AppLogger, we track per-thread resource us-
age statistics including CPU utilization, brightness levels, and
WiFi and 3G usage; we also use hardware counters on the
ARM system-on-chip to understand architectural characteris-
tics. Section 3.1 describes in more detail the overhead asso-
ciated with user-level logging and compares it with our Ap-
pLogger approach.

Tracking energy consumed by a consumer phone is chal-
lenging since they lack sensors that can be instrumented for
tapping into the power supply. We have devised a novel solu-
tion to tap into the lines between the battery and the phone –
we utilize a custom USB interface board to log power values
at a fine granularity of up to 100Hz, which is then fed into a
monitoring PC. Section 3.2 elaborates on the details of this set
up. Since smartphones include a number of power knobs such
as Dynamic Voltage and Frequency Scaling (DVFS), fine-
grained clock gating of unused hardware, and sleep modes for

various components (e.g., WiFi, GPS), we used this hardware
framework to study the detailed power profile of smartphone
applications, and we find that applications demonstrate sig-
nificant behavioral differences at various CPU frequency lev-
els. We have observed system power consumption reductions
of up to 40% between the lowest and highest CPU frequen-
cies. Furthermore, while the conventional approach of turn-
ing down hardware clock speeds to save power works well to
minimize energy consumption for fixed duration workloads
such as watching a video, we find that many popular applica-
tions actually perform a fixed amount of work, and thus turn-
ing down the CPU frequency prolongs application execution
time and negatively affects overall energy consumption. In
most cases, the smarter energy optimization strategy would
be to Race to Sleep – that is, to run at maximum frequency to
complete the fixed amount of work, and then idle the device.
Overall, we make the following contributions:

• We have developed a framework to study the perfor-
mance and energy profile of smartphone applications on
a consumer phone. We have built a lightweight Ftrace-
based OS-level logger based on Android’s linux kernel
to track all of the activities of an application scattered
across different processes.

• We characterized the energy and power consumption
of smartphone applications drawn directly from popu-
lar categories in the Android marketplace. Interestingly,
outside of the games category, we find Facebook, Skype
and Adobe Reader to be the three most power hungry
applications; contrary to most expectations, the default
Android video player is the least power hungry.

• We characterized the fine-grain impact of frequency and
voltage scaling on both performance and energy con-
sumption. We find that for some applications, such as
web browser, when loading a webpage, running the CPU
at its maximum frequency is the most energy efficient
strategy. The optimal frequency and voltage is applica-
tion specific and can yield up to a 20% energy reduction,
as is the case with the game TapTapRevenge 4.

• Finally, we have developed a non-intrusive and cost-
effective hardware framework (< $100) to directly tap
into the battery supply of any phone and measure the en-
ergy consumption of smartphone applications easily and
at a high frequency.

2 Background
2.1 Energy and Power

The overall power consumption of a digital chip can be
summarized as: P = α.C. f .V 2 + Pstatic where α is the activ-
ity factor, C is the net capacitance load of the system, f is
clock frequency and V is the supply voltage. The chip auto-
matically regulates the voltage for the specific operating fre-
quency. Pstatic indicates the power consumed when the digital
chip is inactive but switched on. Typically, mobile devices

Po
w

er
 C

on
su

m
pt

io
n

Execution Time
Tmin

Po
w

er
 C

on
su

m
pt

io
n

Execution Time
Tdvfs

Baseline System DVFS System

P cm
ax

P sy

s

P id
le

P dv
fs

P sy

s

Figure 1: Relation between Energy and Power. Impact of
DVFS on power and overall energy. Area of rectangle in-
dicates energy. Shaded region indicates power of system
components not impacted by DVFS.

seek to minimize the idle energy of the system and support
low power sleep states for individual components. DVFS is a
technique that can optimize for the dynamic power consump-
tion of the system by reducing f , and thereby V as well.

We discuss the analytical relation between power and en-
ergy (see Figure 1) and characterize the impact of dynamic
power reduction strategies. The power consumed by a smart-
phone can be attributed to two major components: the chip
level components influenced by DVFS, and the system level
components that are independent of DVFS. In the baseline
system with the CPU running at peak frequency, an applica-
tion’s execution time is indicated by Tmin, the average power
consumed by the chip components is Pcmax and the system
level components is Psys. The total energy for the application
is Ebaseline = (Psys + Pcmax).Tmin. When the CPU frequency
and voltage is tuned down, the power of the chip components
reduces to PDV FS, but the power consumption of other sys-
tem components is unaffected; the execution time increases
to TDV FS (> Tmin). The total energy of the DVFS system
can be evaluated as Ebaseline = (Psys +Pdv f s).Tdv f s. As we dis-
cuss in section 5, for some smartphone applications such as
the default Android browser, the increase in execution time
increases the total energy consumed by the overall system.

2.2 Instrumenting the Android Software Stack
The Android SDK by design, contains multiples layers of

software abstraction. A key challenge with this multi-tier
framework is tracking and attributing resource usage to spe-
cific applications. Earlier works implement an application
level logger [5, 8] and probe the various low level /proc/ and
/sys/ interfaces to obtain the requisite information such as
CPU utilization, network usage, and display brightness. Un-
fortunately, probing these low-level virtual file systems re-
quires a user-level application (normally written in Java) to
traverse through multiple layers of Android libraries and ab-
straction, introducing significant overhead and perturbing the
overall application execution. To reduce these overheads,
user-level loggers reduce the frequency of event logging to as
low as 1Hz [8]. This results in missing many fine-grained vari-

ations in the application’s execution profile and losing many
opportunities for energy optimizations. Fine-grained tracking
of resource usage is particularly important for smartphone ap-
plications which typically run for a short duration and demon-
strate varied execution behavior.

3 System Framework
3.1 System Event Tracking

We developed a kernel-level event tracker called AppLog-
ger – an Ftrace-based logger – to gather various resource us-
age statistics at process context switches. Ftrace is a function
tracer utility present in the linux kernel which traces various
operating system events by inserting static tracepoints at spe-
cific areas in the kernel. Ftrace has the ability to trace events
such as scheduling, interrupts, timers, and many others. Of
particular interest is the sched event Ftrace module, which
has the functionality to log task statistics such as self- and
parent- Process IDs and CPU utiliztion at every process con-
text switch. We modified this module to develop AppLogger,
which allows for the logging of useful statistics such as per-
formance counters, WiFi, 3G byte and packet counts, display
brightness, and CPU frequency and voltage. This information
is obtained directly from the respective drivers - WiFi from
the IPv4 layer, 3G data from the msm rmnet driver, display
brightness from the LCD driver, and the CPU frequency and
voltage from the acpuclock-qsd8x50 driver.

Ftrace is enabled by configuring the kernel to compile
Ftrace and then flashing this Ftrace-enabled kernel onto
the Android phone. AppLogger is enabled from the user-
space through the Ftrace sched event by echoing 1 to
/sys/kernel/debug/tracing/events/sched/enable to gener-
ate trace file at /sys/kernel/debug/tracing/trace. We wrote
a custom Android application called AndroidAppLogger,
which invokes a user-requested Android application of inter-
est, starts AppLogger, brings the application into the fore-
ground (executing it, if it is not already running) and waits
until the user requests to stopping logging. AndroidAppLog-
ger also coordinates this with our energy logging framework,
PowerLogger.

3.2 Energy Tracking
Investigating the power consumption of smartphones re-

quires accurate real-world power sensing hardware. The chal-
lenge with a phone is getting reliable current and voltage read-
ings without damaging the phone. The solution we used was
to create a 3D plastic replica of the smartphone’s battery and
its battery compartment. The plastic replica battery is inserted
into the phone, and the real battery is placed into the plastic
replica battery compartment. The electrical battery contacts in
each of the plastic replicas are then wired to a power measure-
ment board featuring the Linear Technology LTC2942 chip.
Figure 2 shows our overall setup.

The LTC2942 is a coulomb counter which measures the
voltage and coulombs (current[Amps]× time [seconds]) con-
sumed by the phone and reports it to a PC via a USB commu-

PowerLogger

Ph
on

e

Power
Gauge

PC Interface

Battery

Figure 2: Fine-grain power measurement of smartphones.
Monitoring PC is running our PowerLogger Application.

nication module (FTDI UM232H). With this set up the phone
and battery each have reliable connections to the sampling
hardware with no modifications needed to the phone itself.
Furthermore, because the original battery is still being used to
supply power, the behaviour of the phone is unaffected.

We developed a logging application, PowerLogger which
runs on the PC connected to the measurement hardware. This
application polls the LTC2942 measurement chip at a rate be-
tween 10-50hz, reading the instantaneous voltage (vn) and the
number of coulombs consumed by the phone thus far during
the test (qn). It also records the time of the sample (tn).

The PC based logging application converts the coulomb-
counter and voltage readings from the measurement hardware
into instantaneous power and instantaneous current results. It
calculates the instantaneous current as: in =

qn−qn−1
tn−tn−1

The in-
stantaneous power (pn) is calculated by: pn = in× vn

The total hardware cost of our overall set up is $100 and
is almost completely independent of the phone model. Instru-
menting a different phone model simply requires creating new
plastic replicas of the battery, and the battery housing (' $20).

4 AppLogger Overhead
We compare the overhead of using our Ftrace-based Ap-

pLogger over existing technologies such as PowerTutor [8].
PowerTutor is an Android user-level application which logs
application resource-usage, amongst other features. Power-
Tutor uses a polling-based approach to gather resource-usage
statistics at a frequency of 1Hz. This low rate of logging is in-
sufficient to capture the resource-usage of processes at a fine
granularity. In contrast, AppLogger collects task statistics at
every context switch, which is a frequency often greater than
100Hz. Even at such a high rate of logging, this approach does
not add much overhead to the system. In contrast, a user-level
polling based approach adds significant overhead at a logging
frequency of even 10Hz since it has to traverse multiple layers
of the software stack.

We compare the overhead of AppLogger against Pow-
erTutor logging at 1Hz (paraphrased as PowerTutor-1) and

0

200

400

600

800

1000
A

n
Tu

Tu
 B

e
n

ch
m

ar
k

No Logging
FTrace based AppLogger
PowerTutor-1
PowerTutor-10

(a) AnTuTu Benchmark (higher is better)

0

2000

4000

6000

8000

10000

12000

14000

998MHz 576MHz 245MHz

B
B

e
n

ch
 (

m
s)

No Logging
AppLogger
PowerTutor-1
PowerTutor-10

(b) BBench Benchmark (lower is better)

Figure 3: Comparing the overhead associated with
the Ftrace-based AppLogger when running different
workloads. PowerTutor-1: user-level logging at 1Hz,
PowerTutor-10 : user-level logging at 10Hz.

a version of PowerTutor with the logging rate increased to
10Hz (PowerTutor-10). We note that PowerTutor was not de-
signed to log at 10Hz, but we chose it to improve the reso-
lution of the logged data towards the accuracy we see with
Ftrace. We compare the results of AppLogger and Power-
Tutor with the baseline Android system which has all log-
ging turned off. We used several popular benchmarks, in-
cluding AnTuTu, Quadrant Pro, and BBench [3], to determine
the overhead as shown in Figure 3. AnTuTu and Quadrant
Pro include multiple synthetic microbenchmark tests for the
CPU, memory, and internal storage, while BBench employs
a more realistic workload setting and is a web-page render-
ing benchmark comprising of offline-versions of many popu-
lar websites on the internet (e.g., Youtube, CNN). With An-
TuTu, AppLogger demonstrates negligible overheads for the
CPU and memory tests and shows only 1.5% degradation for
the I/O test, PowerTutor-1 shows performance losses of 3%
for the CPU, 2% for memory, and 6% for database I/O, and
PowerTutor-10 fared much worse with over 20% performance
loss in each of these tests. Quadrant Pro demonstrated simi-
lar trends, except for the CPU test on which AppLogger and
PowerTutor-10 exhibited a ' 20% performance degradation.
With BBench, AppLogger shows less than 1% performance
loss, while PowerTutor-1 and PowerTutor-10 show around 4%
and 20% performance loss respectively at 998Mhz; however,
as we lower the frequency to save power, PowerTutor’s over-
head dramatically increases, and at 245Mhz PowerTutor-10
requires nearly 2.5× longer to complete the BBench run over
the baseline.

5 Performance and Energy
Tasks performed on a smartphone can often be charac-

terized as being either: 1) fixed work, or 2) fixed duration.
An example of a fixed work task is rendering a set of web-
pages [3], which does not require the application to be run for
a certain amount of time, but rather that the application finish
rendering a fixed number of webpages. In contrast, examples
of fixed duration tasks include listening to music, watching
videos, or playing certain video games.

It is critical to realize that with mobile devices the key
objective is to minimize the total energy an application con-
sumes to complete a task. We installed a custom firmware
on the smartphone that unlocked 6 levels of frequency volt-
age scheduling, varying from 245MHz to 1GHz and 0.95 to
1.00V. We tested the effect of throttling back the speed of the
CPU to complete a number of tasks for different applications.
Figure 4 shows the power usage and total energy consump-
tion profiles for the BBench benchmark with the Opera Mo-
bile web browser, and Figure 5 shows the same profiles for
the Tap Tap Revenge 4 rhythm game. The top of each figure
shows the power being consumed by the smartphone during
the active task and, at the bottom, the total energy consumed
to complete the task. The total energy is calculated by inte-
grating the area under the power consumption waveforms

Figure 4 shows that lower CPU frequencies are correlated
with lower power consumption. However as the CPU fre-
quency drops, the completion time for the webpage rendering
extends quite significantly. At 768MHz, the average power
consumption is 1300 mW but execution time is 220s, whereas
at 576MHz the average power consumed 14.8% less (1107
mW), but it runs for 30% longer (286s). The total energy
consumed at the slower CPU speed is 10% higher than at the
higher clock speed. At 245MHz the execution time increases
by 4× causing 2× the energy consumption as opposed to at
998MHz.

The Tap Tap Revenge 4 (TTR4) game (Figure 5) demon-
strates a contrasting phenomenon. The TTR4 test is com-
prised of a short initial phase where the game loads up and a
longer game-play phase where the user plays the game while
listening to the song. The power trace shows that for all of the
CPU frequencies there is a noticeable change in power con-
sumption between the initial loading phase and the game-play
phase. The actual game-play phase is approximately same
length at all frequencies because the level lasts the fixed length
of the song. The major difference in run-times for the differ-
ent CPU frequencies is the time it takes to load the level; at
998MHz it takes 15s to load, whereas at 245MHz it takes 50s.

Interestingly, for all but the minimum CPU frequency, en-
ergy is saved by lowering the frequency because although
additional time is needed to complete the task, the system
consumes less power. For example, at 998MHz, the average
power consumption is 1713mW and it takes 115s to complete;
whereas at 384MHz it consumes 25.8% less energy on aver-
age (1270mW), but only takes 13.8% longer (131s). This re-
sults in 15.8% savings in total energy consumed at the lower

600

800

1000

1200

1400

1600

1800

2000

2200

0 200 400 600 800

In
st

an
ta

n
e

o
u

s
P

o
w

e
r

(m
W

)

Time (S)

"ONDEMAND" "998MHz" "768MHz"

"576MHz" "384MHz" "245MHz"

0
100
200
300
400
500
600
700

O
N

D
EM

A
N

D

9
9

8
M

H
z

7
6

8
M

H
z

5
7

6
M

H
z

3
8

4
M

H
z

2
4

5
M

H
z To

ta
l E

n
e

rg
y

(J
o

u
le

s)

Figure 4: Opera Mobile running BBench [3]. Top: Power
consumption trace to complete one BBench iteration. Y-
axis starts at 600mW. Bottom: Total energy consumed to
complete that iteration. (Best viewed in color)

CPU frequency. At 245MHz the additional load-time for the
test negates the energy saved by consuming less power.

A good power optimization strategy for TTR4 would be to
have the CPU run at a higher speed while loading the level, in
order to load quickly, and then during the game-play phase run
at a slower CPU frequency to minimize power consumption.

Table 1: Tradeoff between FPS and CPU frequency. Num-
bers in brackets indicate % improvement in power con-
sumption relative to 998Mhz. Negatives indicate lower
power consumption.

ONDEMAND. 998Mhz 576Mhz 245Mhz
Angry Birds 54 (-6.1%) 54 (1.63W) 50 (-11%) 37 (-26%)

Tap Tap 44 (-6.2%) 44 (1.75W) 35 (-17%) 16 (-36%)
Blood & Glory 17 (-1.1%) 17 (1.74W) *14 (-18%) *4 (-34%)

Tetris 31 (-0.6%) 31 (1.69W) 31 (-18%) 19 (-31%)
*Blood & Glory: at 576Hz, some swipes are not registered. At
245MHz, no swipes are registered and unable to complete level.

5.1 Gaming QoS and DVFS Tradeoff
To investigate game playability, we connected the smart-

phone to a PC and used the Qualcomm’s Adreno Profiler [4]
to measure the Frames Per Second (FPS) of the game-play
phase at different CPU frequencies, shown in Table 1.

Across the four games that were tested at different CPU
frequencies, only Blood & Glory was found to suffer a seri-
ous QoS degradation when the CPU frequency was reduced;
at 576MHz, the game dropped to 14FPS and became difficult
to play, and was even worse at slower speeds. However, for
other games, our informal QoS analysis suggests that there
is a significant amount of energy to be saved by reducing the
CPU frequency as long as the game is able to maintain accept-

500

750

1000

1250

1500

1750

2000

0 50 100 150

In
st

an
ta

n
e

o
u

s
P

o
w

e
r

(m
W

)

Time (S)

"ONDEMAND" "998MHz" "768MHz"

"576MHz" "384MHz" "245MHz"

0

50

100

150

200

250

O
N

D
EM

A
N

D

9
9

8
M

H
z

7
6

8
M

H
z

5
7

6
M

H
z

3
8

4
M

H
z

2
4

5
M

H
z

To
ta

l E
n

e
rg

y
(J

o
u

le
s)

Figure 5: Tap Tap Revenge rhythm game. Top: Power
consumption trace to complete one level. Y-axis starts at
500mW. Bottom: Total energy consumed to complete one
level. (Best viewed in color)

able frame rates. For example, Angry Birds could maintain 37
FPS at 245MHz while still being completely playable and re-
ducing the power consumption by 26%; running it at 576Mhz
would have still saved a noteable amount of power (11-18%)
with a minimal – and difficult to preceive to the naked eye –
loss in FPS (10-20% decrease). In comparison, the Ondemand
governor conserves much less power (only 6%).

5.2 Power Consumption of Daily Applications
Figure 6 shows the average power consumption of popular

applications on the Android market. Overall we find that the
default Ondemand frequency controller has minimal effect on
saving power. In all applications other than the default video
player and Skype, the smartphone with Ondemand consumes
more energy than the phone running at 768Mhz, with an aver-
age savings of only 4.5% over the 988Mhz setting. DVFS has
the least impact on the video player since other power hungry
components in the system (e.g., display, WiFi) dominate the
overall power consumption. Facebook, Skype and Adobe are
the most power hungry applications when the CPU is running
at its maximum frequency. However, DVFS has significant
positive impact on these applications; at 576Mhz the power
consumption reduces by 19% for Facebook, 11% for Skype
and 28% for Adobe. Facebook and Skype are significantly
influenced by the communication with their online servers;
Facebook transmits '12KB/s and Skype transmits '6KB/s
on average. With Adobe Reader, initial investigation indicates
that the parsing phase is the primary power hog. The PDF
parsing phase utilizes up to 50% of the CPU and has a high
branch misprediction rate (43.5 mispredictions/10K instruc-
tions). We find the video player to be highly optimized and

has the lowest power consumption amongst all applications
investigated. Interestingly, Twitter (which transmits 3KB/s
over the network) consumes as much power as Google Maps.
Our analysis suggest suggests that significant improvements
can be made to reduce the network behavior of Facebook and
Twitter. Finally, we find that the Opera Mobile browser con-
sumes marginally less power (3-4%) than the default browser.
Overall, our analysis suggests that application-specific fine-
grain auditing of energy consumption and tuning of dynamic
power knobs is needed to eliminate waste and improve overall
system energy efficiency.

0

200

400

600

800

1000

1200

1400

1600

1800

D
ef

au
lt

B

ro
w

se
r

O
p

er
a

V
id

e
o

A
d

o
b

e
R

ea
d

e
r

Sk
yp

e

Fa
ce

b
o

o
k

G
o

o
gl

e
M

ap
s

Tw
it

te
r

A
vg

. P
o

w
e

r
 (

m
W

at
ts

)

ONDEMAND 998MHz 768MHz

576MHz 384MHz 245MHz

Figure 6: Varied total power consumption with DVFS.

6 Related Work
The ECOsystem [7] work was one of the earliest to present

a case for energy management in the operating system. Zeng
et. al. analyzed the influence of hardware knobs on the energy
profile of hardware components (e.g., memory) and proposed
that the policy be embedded into the OS. We have highlighted
that energy is the key focus of mobile systems and that tech-
niques that lower the power consumption in current systems
adversely affect total energy consumption. Flinn and Satya-
narayanan [2] studied the benefits of lowering the QoS of an
application on its overall energy consumption. We only high-
light the power-saving configurations that cripple the ability
of the application to deliver acceptable interactability.

Recently researchers have analyzed the power consump-
tion of the various hardware components in a smartphone [1].
This work used an open hardware development phone to tap
into the power supply lines of the individual components.
Others [5, 8] have estimated the power consumption of the
various components using a linear regression of various sys-
tem events (e.g., packets sent over WiFi). These works use a
user-level logger program to ensure easy installation and de-
ployment. Unfortunately, as we have quantified, these user
level logging programs encounter severe overheads and de-
grade battery life and application performance when trying to
record statistics at a fine granularity. These tools are more use-
ful for analysis during application development rather than in
fine-grained online power management.

In this study, we find that for many smartphone workloads,

lowering the CPU frequency increases execution time, which
offsets any gain in power savings and increases energy con-
sumption overall. For battery operated devices energy should
be the focus, since the devices are implicitly low power by de-
sign. Others have observed a similar trend in webservers [6].

7 Conclusion
We considered two competing energy optimization ap-

proaches: Race-to-Sleep, and CPU frequency reduction. Our
analysis of different Android applications shows that no sin-
gle approach yields energy savings across all situations. We
found that for tasks which have a fixed amount of work, such
as loading a webpage, running the CPU at maximum fre-
quency is the most efficient because it reduces the time the
tasks take, during which the screen and other power hungry
components have to be powered up. On the other hand, we
found that for tasks which run for a fixed duration, such as
playing a video or a game, running the CPU at a lower fre-
quency is the most efficient because the nature of the task dic-
tates the execution time.

Our analysis of playability of different games at different
CPU frequencies shows that there is quite a bit of flexibility
in terms of reducing the CPU frequency without compromis-
ing game playability or fidelity. This should be an important
heuristic to use in DVFS algorithms on smartphones to min-
imize game energy consumption and maximize battery life.
Finally, our study of various workloads reveals that Facebook,
Skype, and Adobe Reader are the top three power hungry
non-gaming applications. Many applications that periodically
sync up with a remote server (e.g., Facebook, Twitter) tended
to be power hungry. The default video player was found to be
most power efficient application as it exploits dedicated video
decoding hardware on the smartphone.

References
[1] A. Carroll and G. Heiser. An analysis of power consumption in a smart-

phone. In Proc. of the 2010 USENIX, 2010.
[2] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile

applications. In Proc. of the 17th ACM Symp. on Operating Systems
Principles, 1999.

[3] A. Gutierrez, R. G. Dreslinski,, T. F. Wenisch, T. Mudge, A. Saidi, C.
Emmons, and N. Pave. Full-System Analysis and Characterization of
Interactive Smartphone Applications. In Proc. of the IEEE Intl. Symp.
on Workload Characterization, 2011.

[4] Qualcomm. https://developer.qualcomm.
com/develop/mobile-technologies/
graphics-optimization-adreno. 2010.

[5] A. Shye, B. Scholbrock, and G. Memik. Into the wild: studying real
user activity patterns to guide power optimizations for mobile architec-
tures. In Proc. of 42nd Intl. Symp. on Microarchitecture, 2009.

[6] E. L. Sueur and G. Heiser. Slow Down or Sleep, that is the Question.
In Proc. of the 2011 USENIX, 2011.

[7] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSystem: man-
aging energy as a first class operating system resource. In Proc. of the
10th Intl. Conf. on Architectural Support for Programming Languages
and Operating Systems, 2002.

[8] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. Mao, and L.
Yang. Accurate Online Power Estimation and Automatic Battery Be-
havior Based Power Model Generation for Smartphones. In Proc. of the
Hardware/Software Codesign and System Synthesis, Oct. 2010.

