

A PERFORMANCE STUDY OF ISOLATION LEVELS IN SQL SERVER 2008

Project Report
Adrian Kwok

adriank@sfu.ca

SFU ID #200136359

CMPT 740

Professor Luk

April 13th, 2011

Page 2

1. INTRODUCTION

The primary concern of this project is to empirically show the performance repercussions of choosing an

isolation level in SQL Server 2008 R2 that constricts the level of concurrency more-so than necessary. For

example, in an application where no unrepeatable reads are possible in the first place, what are the penalties

of choosing an isolation level of REPEATABLE_READ or higher? While many sources stress that a

transaction’s isolation level should be chosen with care due to possible performance degradation with

concurrent transactions, it is not immediately clear whether this would result in a system that is marginally

slower, or orders of magnitude slower in real world scenarios.

In this vein, this project utilizes a simple database of tuples in SQL Server and a highly concurrent

benchmarking application written in Java in an attempt to demonstrate the consequences of setting

“incorrect” isolation levels to eliminate the read anomalies specified in SQL-92[1]. As a side-effect of the

results presented in this paper, we also show that snapshot isolation (i.e. multi-version concurrency control)

performs admirably under many different scenarios – sometimes as well as the lowest isolation level – while

still being able to eliminate most anomalies.

2. METHODOLOGY

Since the goal of the project was to demonstrate the performance of the isolation levels offered in SQL Server

2008 R2 under varying real world scenarios, there were five important aspects that were crucial during the

creation of the experiment environment:

1.) The benchmark application (i.e., the client) should utilize multithreading to emulate a large number

of transactions being sent simultaneously to the server.

2.) To ensure the integrity of the study’s results, the benchmarking application should be carefully

engineered in such a way that a minimal amount of processing be done client-side during the

benchmark.

3.) The study should encompass all three major read-anomalies that SQL Server’s five isolation levels

seek to address – specifically, Dirty Reads, Unrepeatable Reads, and Phantoms should be shown to be

impossible under certain READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ,

SERIALIZABLE, and SNAPSHOT isolation levels. This will require after-benchmark analysis.

4.) The study should show the server’s performance under a vast number of concurrent transactions

varying from a simple single-threaded architecture (i.e. 1 transaction at a time) to as many

concurrent transactions as the server will allow.

5.) The study should utilize transactions that are somewhat realistic and should, at the very least,

provide a range of different possible workloads for each transaction.

After much deliberation, four parameters which would likely heavily influence the overall running time of a

benchmark were defined as follows:

1.) The number of concurrent transactions.

2.) The distribution of “reader” transactions versus “writer” transactions.

3.) The complexity of each transaction – more specifically, the complexity of each write transaction.

4.) The total number of transactions performed per benchmark.

How all of these aspects were covered during the process of performing this study will now be discussed in

the following two subsections.

Page 3

2.1 METHODOLOGY: CLIENT

The benchmarking client is a Java (J2SE) application utilizing Microsoft’s JDBC driver[8] to connect to the

provided SQL Server 2008 R2 instance. The client relies on Java’s ExecutorService[11] API to create and

maintain a thread pool consisting of X threads: each thread is a runnable TransactionTask object,

which just sends a predefined SQL query to the server. To satisfy the first requirement discussed previously,

every TransactionTask is initialized and set up prior to the start of the thread pool, and absolutely no

additional work other than executing the already initialized query and storing the query’s results (if

applicable) is done while the thread pool is running.

The client first initializes a predetermined number (1000 in benchmarks discussed in this paper) of

TransactionTask objects. Since the benchmark relies on a mixture of “reader” transactions and “writers”

to show the anomalies in question, a weighted coin is flipped during the initialization of each

TransactionTask, specifying whether it will eventually be sending a SELECT query or an UPDATE query to

the server. The client then adds all of these TransactionTask objects to the ExecutorService’s thread

pool, and starts the pool. Each TransactionTask that is currently in the thread pool is then executed,

which results in queries being sent to the SQL Server database – when a TransactionTask in the pool is

completed, another TransactionTask enters the thread pool in its place. The client then waits until all

TransactionTask objects are done executing, and afterwards analyses the results if requested by the user.

High-level pseudocode descriptions of the client and each TransactionTask are provided below:

0 Client

1 { Initialize a thread pool of size X threads – X is the number of concurrent xacts.

2 Create an array of TransactionTask objects of size Y called Tasks. This is the total #

 of xacts performed in the benchmark.

3 Initialize all objects in Tasks by flipping a weighted coin and assigning it

 either a “select” query or “update” query.

4 Initialize the thread pool.

5 START the benchmark timer.

6 Add all TransactionTasks in Tasks into the thread pool, executing them automatically.

7 SLEEP until all TransactionTasks are completed.

8 STOP the benchmark timer.

9 Analyze results of each TransacionTask (if specified to do so by the user).

10 }

0 TransactionTask (on thread execution)

1 { Create a new connection to the DB.

2 Execute SQL query(or queries) defined by client during initialization.

3 Store query results into self, if the query is a SELECT query.

4 Close connection to the DB.

5 }

6 TransactionTask (on results analysis)

7 { Analyse results depending on read anomaly requested.

8 }

Of course, there is additional code written in the client to automate the collection of benchmark results (e.g.

automating the number of iterations performed, the number of concurrent transactions, etc.). Furthermore,

the definition of each SQL query in a TransactionTask depends on the type of anomaly being tested. The

SQL queries are described in further detail in the following database methodology section.

Page 4

2.2 METHODOLOGY: DATABASE

The experiment’s SQL Server database consists of a simple table “Experiment” consisting of 1000 tuples.

Each tuple contains fields “ID” and “Value”, where “ID” is an indexed unique key. Prior to each benchmark,

the table is prepared such that there are exactly 1000 rows, with each “ID” ranging from 1 to 1000, and every

“Value” field set to 0.

Since the actual workload per benchmark needs to vary from instance to instance for result gathering

purposes, this is accomplished by requesting writer transactions to update or insert a prespecified number of

random rows. Prior to the transactions’ execution, these query statements are precompiled by the client; this

is to offload processing done during the actual benchmark. As such, the random rows that each

TransactionTask writer is meant to update are decided prior to the benchmark. The number of random

rows that are updated is equivalent to the parameter (0 1) multiplied

by the number of rows in the table.

Dirty Read

Reader TransactionTask Writer TransactionTask

1 BEGIN TRANSACTION
2 SET ISOLATION LEVEL
3 Results = SELECT Value FROM Experiment
4 END TRANSACTION

1 BEGIN TRANSACTION
2 SET ISOLATION LEVEL
3 UPDATE Experiment SET Value=1 WHERE
 ID=RANDOM_ID1, ID=RANDOM_ID2,
 ID=RANDOM_ID3, …
4 ABORT
5 END TRANSACTION

Table 1: SQL Queries used to demonstrate “Dirty Read” anomalies.

As all “Value” fields in the Experiment table are set to 0 initially, determining the number of dirty reads is

trivial: since all updates are aborted, each TransactionTask only needs to go through “Results” and tabulate

values that are equal to 1, as any value not equal to 0 infers a dirty read.

Unrepeatable Read

Reader TransactionTask Writer TransactionTask

1 BEGIN TRANSACTION
2 SET ISOLATION LEVEL
3 Results1 = SELECT Value FROM Experiment
4 Results2 = SELECT Value FROM Experiment
5 END TRANSACTION

1 BEGIN TRANSACTION
2 SET ISOLATION LEVEL
3 UPDATE Experiment SET Value=1 WHERE
 ID=RANDOM_ID1, ID=RANDOM_ID2,
 ID=RANDOM_ID3, …
4 COMMIT
5 END TRANSACTION

Table 2: SQL Queries used to demonstrate “Unrepeatable Read” anomalies.

Again, determining whether a reader TransactionTask has experienced an unrepeatable read is trivial: it only

needs to check if any values for a corresponding row in Result1 are different than that in Results2.

Page 5

Phantoms

When trying to demonstrate phantom anomalies, each writer needs to prune the database back to the initial

1000 tuples before inserting a random number of rows to the table; otherwise, if the table isn’t pruned, it may

grow exceptionally large over time and skew results gathered from transactions that are executed last.

The number of rows inserted into the table during each TransactionTask is determined, as before, by the

 user parameter.

Reader TransactionTask Writer TransactionTask

1 BEGIN TRANSACTION
2 SET ISOLATION LEVEL
3 Results1 = SELECT Value FROM Experiment
4 Results2 = SELECT Value FROM Experiment
5 END TRANSACTION

1 BEGIN TRANSACTION
2 SET ISOLATION LEVEL
3 DELETE FROM Experiment WHERE ID>1000
4 INSERT INTO Experiment (Value) VALUES
 (1), (1), … , (1)
5 COMMIT
6 END TRANSACTION

Table 3: SQL Queries used to demonstrate “Phantom” anomalies.

Determining whether a phantom anomaly has occurred during a reader TransactionTask’s execution is a bit

trickier to do efficiently: note that if the number of returned entries in Results1 and Results2 differ, then

surely a phantom has occurred. However, if the number of entries in Results1 and Results2 are the same, this

doesn’t necessarily mean that a phantom hasn’t occurred: observe the scenario where 2 rows are deleted and

2 new rows are inserted – although the number of rows are unchanged, the rows themselves have. Thus, if

the size of Results1 and Results2 is the same, it is necessary to scan through all items in Results1 to ensure

that every row that exists in Results1 also exists in Results2.

3. CHALLENGES

Although theoretically the study should be rather simple to implement and execute, in reality there were

many challenges that were encountered during the process of conducting this study. Unfortunately, since the

SQL Server instance is provided by CSIL, it is not entirely clear whether the issues faced are due to the

server’s configuration or due to a deeper underlying problem with SQL Server – although the latter seems

unlikely as SQL Server is a commercial, widely adopted enterprise application.

The most notable problem faced was that the provided SQL Server instance has severe issues in dealing with

a large number of concurrent transactions; while the client (which was run on a crippled virtual machine,

again provided by CSIL) was able to handle up to 2000 threads with ease, any benchmark that tried to send

more than 500 concurrent transactions to the database would result in a cryptic SQL exception being thrown:

“Transaction X (Process ID X) was deadlocked on lock resources with another process and has been

chosen as the deadlock victim. Rerun the transaction”

When this exception is thrown, all active transactions immediately throw the same exception repeatedly.

Similarly, the database grinds to a halt: the activity monitor in SQL Server Management Studio becomes

unresponsive and self terminates, and reconnection attempts fail. Initially, my interpretation of this error

was that a deadlock was occurring due to the semantics of the transaction itself; that is, a transaction with a

lock on row X may have requested, say, a row lock on row Y, while another transaction holding a row lock on

row Y may be requesting a lock on row X, resulting in a deadlock. However, after much experimentation –

Page 6

eventually even disabling the use of locks with the NOLOCK SQL query hint – the exception still surfaced even

with the simplest of transactions.

After much research and troubleshooting, the documentation for the exception was examined more

carefully[9] – it seemed that the exception was a “catch-all” exception on all resources that can deadlock.

Most notably, the same exception is thrown regardless of whether the system is deadlocked due to locks

(which is resolved rather quickly by SQL Server) or if the deadlock is due to more complex resources such as

a lack of available memory or process worker threads (which, for obvious reasons, takes much longer to

resolve). Surely enough, the activity monitor in SQL Server Management Studio, when filtered properly,

showed that the deadlock resource in question was related to the number of available threads [Figure 1].

Figure 1: Server deadlock due to exhausted resources shown via SQL Server Management Studio.

To confirm this hypothesis, a deadlock trace was conducted via SQL Server Profiler, which resulted in the

deadlock graph shown in [Figure 2]. The graph shows a singular victim process being deadlocked due to a

thread pool, attached to hundreds of other processes.

Figure 2: Server deadlock due to exhausted resources, shown via deadlock graph from SQL Server Profiler.

Another problem arose while trying to gather results from the benchmarking client: as the client was run on

a virtual machine provided by CSIL, the results generated were prone to severe fluctuations. An attempt to

mitigate these fluctuations is shown in the Results section of this paper – each singular benchmark would be

Page 7

run numerous times, and an average value would be used instead of a singular result. However, this is only a

quick fix to address a more serious underlying issue with the experiment environment.

The cause of these fluctuations seems to be caused by the lack of available system resources on the virtual

machine. When the client is running a benchmark with a moderate number of concurrent transactions (e.g.

around 300), the CPU usage on the system is fully saturated – however, Java.exe only utilizes around 60% of

the CPU, and the remaining cycles are consumed by sqlservr.exe, which implies that both the benchmarking

client and SQL Server instance (or a large component thereof) are running on the same virtual machine. As

well, due to the low system resources available to the client, each benchmark would take many hours to

complete (the ‘heavy workload’ benchmarks took upwards of 12 hours to complete on average), and any

other application running on the same machine would easily influence the test results. Ideally, a dedicated

box should be used for the client, but unfortunately this was not available, even after explicitly requesting so.

While these configurations lead to less-than-ideal experimental conditions, the results gathered do seem to

indicate a trend that is consistent among several different benchmarks. Fortunately, the Java code written for

this experiment (and subsequent graphs) can be easily be conducted on a more stable system if the need

arises to confirm the findings in this paper.

4. RESULTS AND DISCUSSION

As discussed in the Section 2 previously, there were four parameters defined that may influence the time it

takes for each benchmark to complete: the number of concurrent transactions (num_xact), the distribution of

reader and writer transactions (reader_dist), the complexity of each update transaction (num_complexity),

and the number of overall transactions performed (num_tasks).

For each anomaly being tested, five isolation levels are benchmarked with varying numbers of concurrent

transactions. The SQL queries used during each anomaly test is defined in the previous “Methodology”

section. To gather meaningful results from each isolation level benchmark and to eliminate outliers, each

benchmark is iterated 20 times, and the results are denoted as singular points on a graph. A 6th degree

polynomial curve is used as the best-fit for these points to facilitate readability.

Of note, however, is that the overall number of transactions performed in these benchmarks is fixed to be

1000, as increasing this number serves no benefit other than increasing the accuracy of the results –

something that is already ensured by running the benchmarks multiple times in succession.

4.1 DIRTY READ SCENARIO BENCHMARK

A dirty read is defined as a transaction that reads changes made by another transaction that has not yet been

committed. First, to confirm that dirty reads cannot occur in isolation levels higher than

READ_UNCOMMITTED as stated in [7], a simple benchmark utilizing queries from [Table 1] which varies the

number of concurrent transactions from 1 to 401 in steps of 10 is performed, The results are shown in

[Figure 3].

Page 8

Figure 3: Frequency of the “Dirty Read” anomalies occurring under various isolation levels.

As clearly shown, dirty reads occur more frequently as the number of concurrent transactions increase, and

only under READ_UNCOMMITTED; that is, choosing an isolation level higher than READ_COMMITTED serves

no additional benefit in eliminating dirty reads. To illustrate the performance degradation from choosing an

isolation level higher than READ_COMMITTED, a low writer complexity benchmark is performed and its

results are shown in [Figure 4].

Figure 4: Performance of different isolation levels with “Dirty Read” scenario transactions – low workload.

[Figure 4] shows a significant performance penalty (3 slower than READ_COMMITTED with 400

concurrent transactions) when using either REPEATABLE_READ or SERIALIZABLE to eliminate the anomaly.

This is likely due to the way locks are handled under these isolation levels: in REPEATABLE_READ and

Page 9

SERIALIZABLE, all S- and X-locks are held until the end of a transaction, whereas in READ_COMMITTED these

locks can be released at any time during a transaction, allowing for increased concurrency.

For example, the “SELECT Value” reader query will be able to relinquish locks after analyzing each row in

READ_COMMITTED, allowing concurrent write transactions to write to the row even when the transaction is

not completely finished. However, in REPEATABLE_READ/SERIALIZABLE, the reader transaction must hold

the lock for all rows until it is finished with the transaction, meaning that all concurrent write transactions

are blocked until the entire reader transaction is completed. Do note that this clearly means

REPEATABLE_READs are very possible under READ_COMMITTED – if a writer updates a row and commits

after the row’s lock is released by a reader transaction, the reader will read a different value for that row if

the same query is executed again.

What is surprising, however, is that SNAPSHOT_ISOLATION actually results in better performance than

READ_COMMITTED while still being able to prevent dirty reads from occurring – and as shown in later

sections, is also capable of preventing many other anomalies efficiently. This will turn out to be a continuing

trend with multi-version concurrency control.

Figure 5: Performance of isolation levels with “Dirty Read” scenario transactions – medium workload.

For completeness, [Figure 5] shows the same benchmark, but with a higher workload per writer transaction

(each transaction updates 20 rows as opposed to 3 rows previously); both REPEATABLE_READ and

SERIALIZABLE take almost 44% longer to complete the benchmark than SNAPSHOT_ISOLATION. These

results are similar to those from [Figure 4]. However, if the workload is increased even further – that is, each

writer updates to 20% of all available entries in the table) – the difference between isolation levels

diminishes, as shown in [Figure 6]. This is likely because as the number of row updates increases per

transaction, so do the number of blocked transactions due to X-locks being held (i.e. write/write conflicts) –

thus, the performance penalty from these blocked transactions start dominating the performance

improvements given by simply improving read/write concurrency in READ_COMMITTED and

REPEATABLE_READ.

Page 10

Figure 6: Performance of different isolation levels with “Dirty Read” scenario transactions – high workload.

These figures also highlight an important point: while initially increasing the number of concurrent

transactions (e.g. from 1 transaction to 40 concurrent transactions) does speed up the time it takes to

complete the benchmark, increasing it any further beyond a specific point actually results in gradually worse

performance.

4.2 UNREPEATABLE READ SCENARIO BENCHMARK

Similar to the benchmarks for the dirty read scenario, this section shows that unrepeatable read anomalies

can occur in isolation levels lower than REPEATABLE_READ, and the overall performance of each isolation

level under a variety of workloads. As the queries are very similar to those in the previous section – that is,

the only difference is that each reader now does two consecutive SELECTs as opposed to one, and each writer

commits its transaction instead of aborting – and the performance differences in isolation levels are due to

the way the different isolation levels handle locks as explained in Section 4.1, these results will only be briefly

discussed.

As shown in [Figure 7], unrepeatable reads are only possible under the READ_UNCOMMITTED and

READ_COMMITTED isolation levels. At first glance, the results may seem a bit surprising – although both

isolation levels do not prevent the anomaly from occurring, clearly READ_COMMITTED results in fewer

anomalies. However, note that this is likely because in READ_UNCOMMITTED, even writes from transactions

that have not committed yet (e.g. still in progress) will be read by reader transactions, as opposed to in

READ_COMMITTED where reader transactions will never do a read while another write transaction is acting

upon it, and will be blocked until a write is fully complete. This correlates to a higher likelihood that a reader

transaction will read some modified data under READ_UNCOMMITTED.

Page 11

Figure 7: Frequency of “Unrepeatable Read” anomalies occurring under various isolation levels.

As with before, [Figures 8, 9, and 10] show the performance differences between isolation levels under

varying writer workloads.

 Figure 8: Performance of isolation levels with Unrepeatable Read scenario transactions –low workload.

Page 12

Figure 9: Performance of isolation levels with Unrepeatable Read scenario transactions –medium workload.

Of particular note is that in [Figure 9], choosing REPEATABLE_READ or SERIALIZABLE to eliminate

unrepeatable reads takes almost 74% longer to complete the benchmark (as opposed to 44% in Section 4.1

under the same workload) over SNAPSHOT_ISOLATION for 400 concurrent transactions. This is likely due to

the inclusion of two full table scans in the reader transaction as opposed to only one in the previous section.

Figure 10: Performance of isolation levels with Unrepeatable Read scenario transactions –high workload.

As in Section 4.1, as the workload for each writer transaction increases, the blocking due to X-locks (or in the

case of SNAPSHOT_ISOLATION, transaction aborts) dominates the improvements in concurrency between

readers and writers, and as such REPEATABLE_READ/SERIALIZABLE only takes roughly 28% longer to

complete the benchmark over SNAPSHOT_ISOLATION.

Page 13

4.3 PHANTOM SCENARIO BENCHMARK

Phantom anomalies are induced via the SQL queries shown previously in Section 2.2; that is, if an INSERT

operation by any writer transaction happens in-between any two SELECT statements in a reader transaction,

a phantom anomaly will occur. Unlike in the previous section, the benchmark results for these phantom

scenarios are much more interesting, and show a greater diversity in both occurrence rates of anomalies and

the performance differences between varying isolation levels.

Figure 11: Frequency of “Phantom” anomalies occurring under various isolation levels.

As shown in [Figure 11], phantom anomalies occur more often in READ_COMMITTED than in

READ_UNCOMMITTED – this is likely since reader SELECTs are never blocked in READ_UNCOMMITTED (i.e.

both SELECTs can be completed very quickly) thus meaning that the likelihood a row would be inserted

between the two SELECTs will be less than in READ_COMMITTED, where a SELECT may be blocked due to a

writer transaction.

However, a more surprising result is that while phantoms are shown to be possible under

REPEATABLE_READ, they are nowhere near as prevalent as in READ_UNCOMMITTED and READ_COMMITTED

– the reasoning for this is that it’s quite rare that a row could be inserted between the first and second

SELECTs in the reader transaction in REPEATABLE_READ, since a shared lock is held until the end of a

transaction for the first SELECT statement. If the first SELECT statement is on a table with more than 1000

entries, this implies that all other concurrent writer transactions that are attempting to execute the first

query (a DELETE transaction) will be blocked. Thus, this implies that for a row to be inserted between a

reader transaction’s first and second SELECT queries, a writer’s DELETE must be executed first, then a

reader’s first SELECT, and then the writer’s INSERT. However, a similar blocking scenario happens here:

since there are many more readers than writers, and the readers can all share the same lock, the chances of

this happening are slim as DELETES with ID > 1000 will be continuously blocked if the table has more than

1000 entries – and by the time it’s unblocked, it’s likely a reader transaction’s second query (SELECT) will

have been executed already as it shares the same S-lock as the first SELECT query.

Page 14

Figure 12: Performance of isolation levels with Phantom scenario transactions –moderate workload.

[Figure 12] shows the vast difference in benchmark completion times between SERIALIZABLE,

REPEATABLE_READ and the other isolation levels. One thing of particular interest is that while

REPEATABLE_READ does not completely prevent phantom anomalies from occurring, it still takes a

considerably longer time to complete the benchmark when compared to READ_COMMITTED and

READ_UNCOMMITTED. This is likely due to two reasons: by requiring S- and X-locks to be held for the full

duration of a transaction, there is considerably less concurrency for similar reasons shown via the discussion

in Section 4.1. However, another interesting finding is that REPEATABLE_READ was the only isolation level

which resulted in frequent deadlocks as the number of concurrent transactions increased: although these

deadlocks were resolved rather quickly (as they are actual deadlocks due to lock acquisition and not due to

deadlocked resources), they still noticeably influenced the overall results, as can be shown by the many green

outlier points in [Figure 12]. These deadlocks did not occur under SERIALIZABLE.

To determine the cause of these deadlocks under REPEATABLE_READ, a trace was performed via SQL Profiler

and the resulting deadlock graphs are shown in [Figures 13 and 14].

Page 15

Figure 13: Simple deadlock occurring under REPEATABLE_READ

The first deadlock graph likely corresponds to the following scenario: suppose a reader transaction X has an

S-lock on some row A during its SELECT query. It wishes to acquire an S-lock on some subsequent row B –

but row B was recently added by a writer transaction Y and thus Y has an X-lock on row B (keep in mind that

in REPEATABLE_READ locks are only released at the end of a transaction). Now consider if writer transaction

Y wishes to DELETE row A, and thus requests an X-lock – a simple deadlock as shown in [Figure 13] then

occurs. The same issue is compounded further with several different transactions in a deadlock as shown in

[Figure 14].

Figure 14: Compounded deadlock occurring under REPEATABLE_READ

In any case, [Figure 11] clearly shows that only SNAPSHOT_ISOLATION and SERIALIZABLE are able to

eliminate phantom anomalies – and from [Figure 12], the performance difference between the two isolation

levels is orders of magnitude apart; in the worst case, SERIALIZABLE takes over 11-times longer to complete

the benchmark than SNAPSHOT_ISOLATION, which is consistently fast regardless of the number of concurrent

transactions. This is likely because SERIALIZABLE assigns range locks on “ID”, causing almost every reader

transaction (which needs to access the whole possible range of “ID”) to be blocked whenever a writer

transaction is running – as the number of concurrent transactions increases, the time consumed coordinating

these blocked transactions dominates. Furthermore, as SERIALIZABLE relies on an underlying B-Tree

structure to assign and enforce locks, whenever an INSERT or DELETE is issued, the structure needs to be

updated; that is, for an INSERT, the B-Tree’s internal nodes may need to be split potentially multiple times,

and in a DELETE, the tree may need to be rebalanced, which are both costly operations. This is a big issue in

our set of SQL queries as there are numerous INSERT and DELETE operations.

Page 16

Figure 15: Performance of isolation levels with Phantom scenario transactions –high workload.

To further demonstrate the significant performance differences between SERIALIZABLE and the other

isolation levels for eliminating phantom anomalies, a high-workload benchmark were conducted and its

results are shown in [Figure 15] – this benchmark took 3091 minutes to complete. In these results,

SERIALIZABLE’s time to complete the benchmark far exceeds even that of REPEATABLE_READ – with an

average benchmark taking over seven times as long to complete. Similarly, the performance gap between

SERIALIZABLE and SNAPSHOT_ISOLATION – the only isolation levels which eliminate phantom anomalies –

exceeds a factor of twenty.

On the other hand, SNAPSHOT ISOLATION is only ‘slow’ when there are write/write conflicts (therefore

causing one transaction to rollback and retry) – and this can only happen if a writer transaction manages to

choose the same rows to DELETE as another transaction, and in this case, first-committer-wins is a very quick

solution to this problem (no blocking). All other queries are quickly completed via SNAPSHOT_ISOLATION.

Of particular note is that SNAPSHOT_ISOLATION gives the most consistent performance out of all isolation

levels tested in all of Section 4 – it is often indistinguishable from READ_UNCOMMITTED in speed while being

able to eliminate all three popular read anomalies.

Page 17

5. CONCLUDING REMARKS

Although the transactions used in the benchmarks in this paper may not fully reflect real-world scenarios,

they still do manage to give a general idea of the performance differences between the various isolation levels

offered in SQL Server 2008 R2. Most importantly, they clearly show the performance repercussions of

choosing ‘incorrect’ isolation levels to mitigate anomalies common in concurrent transactions – specifically,

as the number of concurrent transactions increase, SERIALIZABLE and REPEATABLE_READ are significantly

slower than READ_COMMITTED in eliminating dirty reads, the widely accepted ‘ideal’ isolation level to do so.

However, the differences between choosing SERIALIZABLE and REPEATABLE_READ to eliminate unrepeatable

reads, on the other hand, are negligible; furthermore, with only the isolation levels defined in SQL-92, the

SERIALIZABLE isolation level does eliminate phantoms, but at a tremendous cost in doing so.

The most notable and unexpected result from this experiment is that SNAPSHOT_ISOLATION eliminates all of

the anomalies outlined in SQL-92 while performing consistently quickly in all of the scenarios tested – in all

cases, it’s comparable to or even faster than READ_UNCOMMITTED. Thus, if a user only needs to eliminate

these common anomalies and is unsure of what isolation level to choose, it may be ideal to default to

SNAPSHOT_ISOLATION for consistent concurrent performance.

However, it is important to note that SNAPSHOT_ISOLATION, unlike the lock-based SERIALIZABLE isolation

level, is not always serializable. While it does eliminate all of the anomalies listed in SQL-92, there many are

other anomalies that exist in multi-version concurrency control protocols[2] – the most notable of which is

write skew. In most cases, the responsibility to eliminate these anomalies is placed on the programmer to

account for it in their application design; indeed, as noted by Fekete et al. in their paper “Making snapshot

isolation serializable”[3], the application itself needs to be modified – usually slightly – to eliminate these

anomalies. In this vein, work has been done in attempting to automate the discovery of such anomalies as

shown by Jorwekar et al.[5].

In the end, while SNAPSHOT_ISOLATION works well in eliminating most anomalies, there is no ‘perfect

solution’ in eliminating all anomalies efficiently and easily, and it is up to the user’s discretion to choose an

isolation level most suitable for their needs; the experiments presented in this paper have empirically shown

the performance implications of these choices.

Page 18

6. REFERENCES

1.) “Information Technology – Database Language SQL”. ISO/IEC 9075:1992, July 30, 1992. Retrieved

on April 4, 2011 from http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt.

2.) A. Fekete, E. O’Neil, and P. O’Neil, “A read-only transaction anomaly under snapshot isolation,” ACM

SIGMOD Record, vol. 33, issue 3, pp. 12-14, September 2004.

3.) A. Fekete, D. Liarokapis, E. O'Neil, P. O'Neil, and D. Shasha, “Making snapshot isolation serializable,”

ACM Trans. Database Syst. vol. 30, issue 2, pp. 492-528, June 2005.

4.) H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and P. O'Neil, “A critique of ANSI SQL isolation

levels,” Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, pp. 1-

10, 1995.

5.) S. Jorwekar, A. Fekete, K. Ramamritham, and S. Sudarshan, “Automating the detection of snapshot

isolation anomalies,” in VLDB ’07: Proceedings of the 33rd international conference on very large data

bases, pp. 1263–1274, 2007.

6.) “Today's Annoyingly-Unwieldy Term: Intra-Query Parallel Thread Deadlocks”, B. Duncan. September
24, 2008. Retrieved on April 4, 2011 from
http://blogs.msdn.com/b/bartd/archive/2008/09/24/today-s-annoyingly-unwieldy-term-intra-
query-parallel-thread-deadlocks.aspx

7.) “SET TRANSACTION ISOLATION LEVEL (Transact-SQL)”, Microsoft Corp., MSDN Documentation on

SQL Server 2008 R2. Retrieved on April 4, 2011 from http://msdn.microsoft.com/en-

us/library/ms173763.aspx

8.) “Overview of the JDBC Driver”, Microsoft Corp., MSDN Documentation on SQL Server 2008 R2.

Retrieved on April 4, 2011 from http://msdn.microsoft.com/en-us/library/ms378749.aspx

9.) “Detecting and Ending Deadlocks”, Microsoft Corp., MSDN Documentation on SQL Server 2008 R2.

Retrieved on April 4, 2011 from http://msdn.microsoft.com/en-us/library/ms178104.aspx

10.) “INF: Analyzing and Avoiding Deadlocks in SQL Server”, Microsoft. Article ID: 1 99 0, Revision 3.0.

October 13, 2003. Retrieved on April 4, 2011 from http://support.microsoft.com/kb/q169960/

11.) “ExecutorService (Java 2 Platform SE 5.0)”, Oracle Corp., Java 2 JDK SE Documentation. Retrieved on

April 4, 2011 from

http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/ExecutorService.html

http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://blogs.msdn.com/b/bartd/archive/2008/09/24/today-s-annoyingly-unwieldy-term-intra-query-parallel-thread-deadlocks.aspx
http://blogs.msdn.com/b/bartd/archive/2008/09/24/today-s-annoyingly-unwieldy-term-intra-query-parallel-thread-deadlocks.aspx
http://msdn.microsoft.com/en-us/library/ms173763.aspx
http://msdn.microsoft.com/en-us/library/ms173763.aspx
http://msdn.microsoft.com/en-us/library/ms378749.aspx
http://msdn.microsoft.com/en-us/library/ms178104.aspx
http://support.microsoft.com/kb/q169960/
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/ExecutorService.html

