A PERFORMANCBSTUDYOFISOLATIONLEVELS INSQL &RVER2008

Project Report
Adrian Kwok | CMPT 740
adriank@sfu.ca ProfessorLuk
SFU ID #2001363% | April 13th, 2011

1. INTRODUCTION

The primary concern of this project is toempirically show the performance repercussions of choosing an
isolation level in SQL Server 20082 that constricts the level of concurrency moreso than necessary. For
example,in an application where no unrepeatable reads are possible in the first place, what are the peedt

of choosing an isolation level of REPEATABLE_REA®& higher? While many sources stress that a

OOAT OAAQET ledebDsholld bel chAdSdh Iwith caredue to possible performance degradation with
concurrent transactions, it is not immediately clear wiether this would result in a system that is marginally
slower, or orders of magnitude slower in real world scenarios.

In this vein, this project utilizes a simple databaseof tuples in SQL Serverand a highly concurrent
benchmarking application written in Java in an attempt to demonstrate the consequences ggtting
OET AT OOAAOG6 E éimihateQlieirebd ahofdidslsp@ceifi€dlin SQLI2[1]. As a sideeffect of the
results presented in this pger, we also show that snapshot isolation (i.e. multiversion concurrency control)
performs admirably under many different scenariosz sometimes as well as the lowest isolation leved while
still being able to eliminatemost anomalies.

2. METHODOLOGY

Since thegoal of the project wasto demonstrate the performance of the isolation levels offered in SQL Server
2008 R2 under varying real world scenarios, there were five important aspects that were crucial durirtdpe
creation of the experiment environment:

1.) The benchmark application {.e., the client) should utilize multithreadingto emulate a large number
of transactionsbeing sentsimultaneouslyto the server.

2) 417 A1 OOOA OEA ET OACOEOU 1T £ OEA OOOAUGcref@A OO OOh OEA
engineered in such a way that aminimal amount of processing be done clienside during the
benchmark.

3.) The study should encompass all three majorread 1 1 | Al EAO OEAO 31, 3A00A0860 A
seek to addresg specifically, Dirty ReadsUnrepeatalle ReadsandPhantomsshould be shown to be
impossible undercertain READ_UNCOMMITTEREAD_COMMITTEREPEATABLE _READ
SERIALIZABLE , and SNAPSHOTsolation levels. This will require after-benchmark analysis.

4) 4EA OOOAU OET Ol A OET x OE &vasbriomdrbixonCurréndt@ngictonsAT AA OT A A
varying from a simplesingle-threaded architecture (i.e. 1 transaction at a time) to as many
concurrent transactionsas the server will allow.

5.) The study shouldutilize transactions that aresomewhat realistic and should, at the very least
provide a rangeof different possible workloads for each transaction.

After much deliberation, four parameters which would likelyheavily influence the overall running time of a
benchmarkwere defined as follows:

1.) The number of concurrent transactions.

2) 4EA AEOOOEAQOOEIT 1T £ OOAAAAOS OOAT OAAOETI T O OAOOOO Ox
3.) The complexity of each transactiory more specifically, the complexity of eachwrite transaction.

4.) The total number oftransactions performed per benchmark.

How all of these aspectsvere covered duringthe process ofperforming this study will now be discussed in
the following two subsections.

Page2

2.1 METHODOLOGYCLIENT

The benchmarking client is a Java (J2SE) application utilizing E A O GODBZEGrvep8] to connect tothe

provided SQL Server 2008 R2 instancelhe client relies onJava ExecutorService [11] APIto createand

maintain a thread pool consisting of X threads:each thread is arunnable TransactionTask object,

which just sends a predefined SQLquery to the server. To satisfy the first requirement discussed previously,

every TransactionTask is initialized and set up prior tothe start of the thread pool, and absolutely no

additional work other than executing the already initialized query and OOT OET ¢ OEA NOAOUSO
applicable) is done while the thread pool is running.

The client first initializes a predetermined number (1000 in benchmarks discussed in this paper) of
TransactionTask objects. 3ET AA OEA AAT AEi AOE OAI EAO 11 A TE@OOOA 1
to show the anomalies in question,a weighted coin is flipped during the initialization of each
TransactionTask , specifying whether it will eventually be sendinga SELECTuery or an UPDATE query to

the server. The client then adds all of thesdransactionTask objects to theExecutorService Qtharead

pool, and startsthe pool. Each TransactionTask that is currently in the thread pool is then executed,

which results in queries beingsent to the SQL Server databasgwhen a Tr ansact i onTask in the pool is

completed, another Tr ansact i onTask enters the thread pool in its place. The client then waits until all
TransactionTask objects are done executing, and afterwardanalyses the results if requestedby the user.

High-level pseudocode descriptios of the clientand eachTransactionTask are provided below.

0 Client
{ Initialize a thread pool of size X threads i Xis the number of concurrent xacts.
2 Create an array of Tr ansactionTask objects of size Y called Tasks. This is the total #
of xacts performed in the benchmark.

3 Initialize all objects in Tasks by flipping a weighted coin and assigning it

either a fAselectd query or Aupdated query.
Initialize the thread pool.
START the benchmark timer.
Add all TransactionTasks in Tasks into the thread pool, executing them automatically.
SLEEP until all TransactionTasks are completed
STOP the benchmark timer.
Analyze resu Its of each TransacionTask (if specified to do so by the user).

[

© 00 ~NO O A

=
o
-

TransactionTask (on thread execution)

{ Create a new connection to the DB.
Execute SQL query(or queries) defined by client during initialization.
Store query results into self, if the query is a SELECT query.
Close connection to the DB.

}

TransactionTask (on results analysis)
{ Analyse results depending on read anomaly requested.

}

0w ~NO U WNEO

Of course, there is additional code written in the client t@utomate the collection of benchmark results (e.g.
automating the number of iterations performed, the number of concurrent transactions, etc.). Furthermore,
the definition of each SQLquery in a TransactionTask depends on the type of anomaly being tested. The
SQLqueries aredescribedin further detail in the following database methodology section.

Page3

2.2 METHODOLOGYDATABASE

The A @D A O E B@Li SéreO database consists of a simple talie% @b A O Edndisting 6f 1000 tuples.

AAE OODPI A AT 1 OAET O EEAI AOG O) $6 Al A Pés th badibrithmarE AOA O) ¢
the table is prepared such thatthere are exactly 1000rows,x EOE AAAE O) $6 OAdn@edryC A£OT I |
Graluedfield set toO.

Since the actual workload per benchmark needs to vary from instance to instander result gathering

purposes, this is accomplished byequesting writer transactions to update or insert a prespecified number of

randomrows. 0 OET O O1 OEA OOA7T OAAQOEI 1 08 AGAAOOEI T h OEAOA RNOAC
is to offload processing done during the actual benchmark. As such, the randomws that each

Transac tionTask writer is meant to update are decided prior to the benchmark. The number of random

rows that are updated is equivalent to the parametero ¢ (0XE @ 1) & ‘QEESDANXE & 1) & S e@) Multiplied

by the number of rows in the table.

Dirty Read
Reader TransactionTask Writer TransactionTask
1 BEGIN TRANSACTION 1 BEGIN TRANSACTION
2 SET ISOLATION LEVEL 2 SET ISOLATION LEVEL
3 Results -SELECTalueFROM Experiment | 3 UPDATE Experiment SET Value=1 WHE
4 END TRANSACTION ID=RANDOM_ID1, ID=RANDOM_ID2,
L5FTw! b5hagyL502 X
4 ABORT
5 END TRANSACTION
Table 1: SQL Queriassed to demonstrat® $ E O Od) ARTAAIAAT EAOS
10O Al O6Ail OA6 EEAI AO E1 OEA %@bAOEI AT O OAAT A AOA OAO

trivial: sinceall updates are aborted, each TransactionTask only needs to go through 2 A O @rid Qldiate
valuesthat are equal to 1 as any value not equal to 0 infers artly read.

Unrepeatable Read

Reader TransactionTask Writer TransactionTask
1 BEGIN TRANSACTION 1 BEGIN TRANSACTION
2 SET ISOLATION LEVEL 2 SETSOLATION LEVEL

3 Resultsl SELECTalueFROM Experiment | 3 UPDATE Experiment SET Value=1 WHE
4 Results2 SELECTalue FROM Experiment ID=RANDOM _ID1, ID=RANDOM_ID2,

5 END TRANSACTION L5Iw! b5hagL503 X

4 COMMIT

5 END TRANSACTION

Table 2: SQL Queriessed to demonstrat® 51 OADAADA AAAT 2AIAEAOS

Again, determining whether a readefTransactionTaskhasexperienced an unrepeatable read is trivial: it only
needs to check if any valuefor a corresponding rowin Resultl are different thanthat in Results2.

Page4

Phantoms

When trying to demonstrate phantom anomalies, each writer needs to prune the database back to the initial

pnnnt OOP1I AO AAEI OA ET OAOOGET ¢ A OATATIT 101 AAO T &£ 01 xO O
grow exceptionally large over time andskew results gathered from transactions that are executed last.

The number of rows inserted into the table during each TransactionTask is determined, as before, by the
G @XE G 1 & ‘Qser@arameter.

Reader TransactionTask Writer TransactionTask
1 BEGIN TRANSACTION 1 BEGIN TRANSACTION
2 SET ISOLATION LEVEL 2 SET ISOLATION LEVEL

3 Resultsl SELECTalueFROM Experiment | 3 DELETE FROM Experiment WHERE D>
4 Results2 SELECTalue FROM Experiment | 4 INSERT INTEXperimentValue) VALUES
5 END TRANSACTION OMOXZ OMUZ X X oO0mMU

5 COMMIT

6 END TRANSACTION

Table 3 SQL Queriassed todemonstrated t Kl yi2Yé Fy2YlfAS&a®

$AOAOI ETET ¢ xEAOEAO A DPEATOTIT ATT1T Al U EA@cutioAid®mOAA AOC
trickier to do efficiently: note thatif the number of returned entries in Resultsl and Results2 differ, then

surely a phantom has occurred. However, if the number of entries in Resultsl and Results2 are the same, this

AT AOT 6 Orilyimdah A& & phantomhasnd occurred: observe the scenario where 2 rows are deleted and

2 new rows are insertedz although the number of rows are unchnged, the rows themselves have Thus, if

the size of Resultsl and Results2 is the same, it is nsesary to scan through all items in Resultsl to ensure

that every row that exists in Results1 also exists in Results2.

3. GHALLENGES

Although theoretically the study should be rather simple to implement and execute, in reality there were

many challenges ttat were encountered during the process ofconducting this study. Unfortunately, since the

SQL Server instance is provided by CSlit,is not entirely clear whether the issues faced are due to the
OAOOAOBO AT 1 EECOOAOQETT T O AOA O1 A zAthdkgAhelat@risdeh©] UET ¢ |
unlikely as SQL Server is @ommercial, widely adoptedenterprise application.

The most noaable problem faced was thathe provided SQL Server instance hasevere issuedn dealing with
a large number of concurrent transactions; while the client (which was run on a crippled virtual machine,
again provided by CSIL) was able to handle up to 200@reads with ease, any benchmark that tried t@end
more than 500 concurrenttransactionsto the database would result in a cryptic SQL exceptidreing thrown:

(ransaction X (Process ID X) was deadlocked on lock resources with another process and has been
AET OAT AO OEA AAAAI T AE OEAOEIi 8 2A001 OEA OOAT OAAOQEI

When this exception is thrown, allactive transactions immediately throw the same exceptionrepeatedly.
Similarly, the database grinds to a halt: the activity monitor in SQL Server Management Studiectmes
unresponsive and self terminates, andeconnection attemptsfail. Initially, my interpretation of this error
was that a deadlockwas occurring due to the semantics of thetransaction itself; that is, a transaction with a
lock on row X may have regasted, say, a row lock on row Y, while another transaction holding a row lock on
row Y may be requesting a lock on row X, resulting in a deadlocklowever, after much experimentationz

Pageb

eventually even disablingthe use oflocks with the NOLOCK SQL quehjint z the exception still surfaced even
with the simplest of transactions.

After much research and troubleshooting,the documentation for the exception was examined more
carefully[9] zEO OAAT AA OEAO OEA -AA @ A A DAGeERBN PeéotikaB thdt ¢a® AcAdibBkE
Most notably, the same exception is thrown regardless of whether the system is deadlocked due to locks
(which is resolved rather quickly by SQL Server) or if the deadlock is due to more complex resources such as
a lack of availdble memory or process worker threads (which, for obvious reasons, takes much longer to
resolve). Surely enoughthe activity monitor in SQL Server Management Studio, when filtered properly,

showed that the deadlock resource in question was related to theumber of availablethreads [Figure 1].

€mpt740-01.net..tivity Monitor | SQLQuery15.sdl...aster (sa (70)) | 5QLQUery14.sal..tks (s (69))* | SQLQUeryl3.sal...ster (sa (67))" | SQLQUerylZ.sal...aster (sa(65) | Table_L.sal-...orks (sa(62)* | CMPT740-01.CM... dbo.Table_1* | =%
Overview @
% Processor Time (23%) g Visiting Tasks (469 jogp DatebasellO (0 MBisec) jo BeichReauestsisec 21) -
& £00 8 200
50 500 3 500
40 400 4 400
20 200 2 200
0 0 0 0
Processes @
- - - . - —~
Sessn J Ussit 5 J Database J Tas g S J folcain [WakTine(m)) Wi Tipe J Wait Resource = g‘yﬂckJ Head n b ;l Host J Yot
332 15 CMPT740_Adven.. SUSPENDED ~ UPDATE Microsoft SOL Se. 293 THREADPODL threadpool id=scheduler30080 16 ompt74001 defaut
33 1sa CMPT740_Adven.. SUSPENDED UPDATE Microsoft SOL Se. 293 THREADPODL threadpool id=schedulerB30080 16 cmpt740-01 defaut
e 153 CMPT740_Adven.. SUSPENDED SELECT Microsoft SOL Se. 557 THREADPOOL threadpool id=scheduler 90080 16 cmpt74001 defaut
335 15 CMPT740_Adven.. SUSPENDED ~ SELECT Microsoft SOL Se. 1698 THREADPOOL threadpool id=scheduler30080 16 ompt74001 defaut
3% 1sa CMPT740_Adven.. SUSPENDED UPDATE Microsoft SOL Se. 1638 THREADPODL threadpaol id=scheduler30080 16 ompt74001 defaut
37 1sa CMPT740_Adven.. SUSPENDED SELECT Microsoft SOL Se. 3045 THREADPOOL threadpool id=scheduler 30080 16 cmpt74001 defaut _|
338 1sa CMPT740_Adven... SUSPENDED SELECT Microsoft SOL Se. 11183 LOKM_S Keplock hoblid=720575340413256, 87 16 cmpt74001 defauit
339 15 CMPT740_Adven.. SUSPENDED UPDATE Microsoft SOL Se. 5648 THREADPOOL threadpool id=scheduler30080 16 ompt74001 defaut
A0 g: CMPTZ40 Ads LISPENDED LIPDATE b ft SO S, a0 10K M keulack hohtid=’ 19066 16 $740.01 detail X
Resource Waits @
Wai Categoy —{ Wit Time (ms/sec) —{ Recent Wai Time (ms/sec) ~] Average Waiter Count ~{ Curative Wait Time (s2c) =&

Figure 1: Server deadlock due texhausted resourceshown via SQL Server Management Studio

To confirm this hypothesis, a deadlock trace was conducted via SQL Server Profiler, which resulted in the
deadlock graph shown in[Figure 2]. The graph shows a singular victim process being deadlocked due to a
thread pool, attached to hundreds of other processes.

Figure 2: Server deadlock due to exhausted resources, showdeaalock graph fromSQL Server Profiler

Another problem arosewhile trying to gather results from the benchmarking client as the client was run on
a virtual machine provided by CSIL, the results generated were prone geverefluctuations. An attempt to
mitigate these fluctuations isshown in the Results section of this papeg each singular benchmark would be

Pageb6

run numerous times and an average value would be used instead of a singular resullowever, this is only a
quick fix to address a more serious underlying issue with the expEnent environment.

The cause of these fluctuations seemt be causedby the lack ofavailable system resources on thevirtual

machine. When the client is running a benchmark with a moderate number of concurrent transactions (e.g.

around 300), the CPU usge on thesystemis fully saturated z however, Java.exe only utilizes around 60% of

the CPU, and the remaining cycles are consumed &glservr.exewhich implies that both the benchmarking

client and SQL Server instance (or erge component thereoj are running on the same virtual machine. As

well, due to the low system resources available to the client, each benchmark would take many hours to

AT 1Pl AGA j OEA OEAAOU x1 OEI T AAS8 AAT AEI dnCateage)Ddnd dhy OB x AOA
other application running on the same machinavould easily influence the test results. Ideally, a dedicated

box should be used for the client, but unfortunately thisvas notavailable, even afterexplicitly requesting so.

While these configurations leadto lessthan-ideal experimental conditions, the results gathered do seem to
indicate a trendthat is consistent among several ifferent benchmarks. Fortunately, the Java code written for
this experiment (and subsequent graphs) can be easily be conducted on a motalde system ifthe need
arises to corfirm the findings in this paper.

4. RESULTS ANDISCUSSION

As discussed in theSection 2 previously, there were four parametersdefined that may influence the time it
takes for each benchmark to complete: the number of concurrent transactions (num_xact), the distribution of
reader and writer transactions (reader_dist) the complexity of each update transaction (num_complexity),
and the number of overall transactions performed (num_tasks).

For each anomaly being tested, five isolation levels are benchmarked with varying numbers of concurrent

OOAT OAAOQEI T O8 4EA 31, NOAOEAO OOAA AOQOOEI C AGAB ATT 1A
section. To gather meaningful results from each isolation level benchmadnd to eliminate outliers, each

benchmark is iterated 20 times, and the results are denoted as singular points @ngraph. A & degree

polynomial curve is used as the besfit for these pointsto facilitate readability.

Of note, however, is that the overall number of transactions performed in these benchmarks is fixed to be
1000, as increasing this number serves no benefit other than increasing the accuracy of the resuits
something that is already ensured by running the benchmarkmultiple times in succession.

4.1 DRTYREADSCENARIABENCHMARK

A dirty read is defined as a transaction that reads changes made by another transaction that has not yet been
committed. First, to confirm that dirty reads cannot occur in isolation levels higher than
READ_UNCOMMITTES stated in[7], a simple benchmarkutilizing queries from [Table 1] which varies the
number of concurrent transactions from 1 to 401 in steps of 10 is pesfmed, The results are shown in
[Figure 3].

Page7

Figure3: 8 OANOAT AU

As clearly shown, dirty reads occur more frequently as the number of concurrent transactions increase, and
only under READ_UNCOMMITTEmat is, choosing an isolation level higher thalREAD COMMITTES2rves
no additional benefit in eliminating dirty reads. To illustrate the performance degradationfrom choosing an
isolation level higher than READ_COMMITTER low writer complexity benchmark is performed and its

results are shown in[Figure 4] .

Frequency of Dirty Reads
(80% of transactions are readers, 20 out of 1000 rows updated per update tr

10.00%

8.00%
“
k-]
©
i
x
£
& 6.00%
S
o
0
8
<
g 4.00%
o
a

2.00%

0.00% === = ® = - B B B = B B 5 S F E S S E 5 S F F E S S F F F F B B B 8

0 50 100 150 200 250 300 350 400
Number of Concurrent Transactions
READ_UNCOMMITTED = READ_COMMITTED = REPEATABLE_READ = SERIALIZABLE = SNAPSHOT s READ_UNCOMMITTED Best Fit

I £ OEA O$SEOOU 2 AdkdisdlatidnilevelsAl EA O

Dirty-read Anomaly Benchmark

Low update workload: [80% of transactions are readers; 3 out of 1000 rows are updated per update transaction]

w==READ_UNCOMMITTED Best Fit e READ_COMMITTED Best Fit = REPEATABLE_READ Best Fit e SERIALIZABLE Best Fit

Figure 4: Performance of different isolation levelk EOE O$ E OO U trandadtibnsz ol AvdrkloAdD E 1

75
.
" '
7 - i,
B
_ Tyl
4 s H i i
g 65 S 1
= i g =t - !
8 ' i | et H
s & '] n *
o L] H a -
E H s
"] s " !
s £ - o [] H
i .]
55 & H - H !]
s - -
i 1 Ly | I
i I i
’ —1 [E
H H
‘ ' | ¢ [gt : :
aaaillREEEEE. . . .
45 a - |] s - -
o 50 100 150 200 250 300 350 400
Number of Concurrent Transactions
READ_UNCOMMITED @ READ_COMMITTED @ REPEATABLE_READ = SERIALIZABLE = SNAPSHOT

e SNAPSHOT Best Fit

[Figure 4] shows a significant performance penalty (bo @ slower than READ_COMMITTERith 400

concurrent transactions) when using either REPEATABLE_READ SERIALIZABLEO eliminate the anomaly.

This is likely due to the way locks are handled under these isolation levels:

REPEATABLE_REAdNd

Page8

T AAOOC

SERIALIZABLEaIl S and Xlocks are held until the end of a transaction, whereas iREAD_COMMITTEBbDese
locks can be released at any time during a transaction, allowing for increased concurrency.

For example,OE BELECT® A1 OA6 OAAAAO NOAOU xEIi |1 AnhlyziAgkehch rodih
READ_COMMITTERIlowing concurrent write transactions to write to the row even when the transaction is
not completely finished However, inREPEATABLE_REABERIALIZABLEhe readertransaction must hold
the lock for all rows until it i s finished with the transaction, meaning that all concurrent write transactions
are blocked until the entire reader transaction is completed. Do note that this clearly means
REPEATABLE_REsRre very possible underREAD_COMMITTEDIf a writer updates a row and commits
AEOAO OEA O1 x80 1 1 Atans&ctbn, A ledkidr Gifk ead A Oifferent @kiehfdr £hax row if
the same query is executed again.

What is surprising, however, is thatSNAPSHOT _ISOLATI@stually results in better performance than
READ_COMMITTEDhile still being able to prevent dirty reads from occurring Z and as shown in later

sections, is also capable of preventing amy other anomaliesefficiently. This will turn out to be a continuing
trend with multi -version concurrency control.

Dirty-read Anomaly Benchmark

Moderate update workload: [80% of transactions are readers; 20 out of 1000 rows are updated per update transaction]

75

Time elapsed (seconds)

@

L]

H
[]
[

i 8 8
L !

Number of Concurrent Transactions

READ_UNCOMMITED = READ_COMMITTED = REPEATABLE_READ = SERIALIZABLE = SNAPSHOT

READ_UNCOMMITTED Best Fit e READ_COMMITTED Best Fit we REPEATABLE_READ Best Fit e SERIALIZABLE Best Fit ====SNAPSHOT Best Fit

OAT ET K

Figure 5: Performance of isolation levels with $ EOOU 2 AAAGS6 O Azkediud brklo@dd AT OAAOQET 1

For completeness[Figure 5] shows the same benchmark, but with a higher workload per writer transaction
(each transaction updates 20 rows & opposed to 3 rows previously); bth REPEATABLE_REA&Nd
SERALIZABLEtake almost 44% longer to complete the benchmark tharSNAPSHOT_ISOLATION hese
results are similar to those from[Figure 4] . However, if the workload is increased even furtheg that is, each
writer updates to 20% of all available entries in the table)z the difference between isolation levels
diminishes, as shown in[Figure 6] . This is likely because as the number of row wgates increases per
transaction, so do the number of blocked transactions due to-lécks being held(i.e. write/write conflicts) z
thus, the performance penalty from theseblocked transactions start dominating the performance
improvements given by simply improving read/write concurrency in READ_COMMITTEDand
REPEATABLE_READ

Page9

Figure 6: 0 AO &I O AT AA T £ AEAEAOCAT O EOI 1 AOET 1zhighhwdrlidad® x EOQE

These figures also highlight an important point: whilanitially increasing the number of concurrent
transactions (e.g. from 1 transaction to 40 concurrent transactionsjioes speed up the time it takes to
complete the benchmark, increasing it any furthebeyond a specific pointactually results ingradually worse
performance.

4.2 UNREPEATABLIREAD SCENARICBENCHMARK

Similar to the benchmarks for the dirty read scenario, this section shows that unrepeatable read anomalies
can occur in isolation levels lower thanREPEATABLE_REABN theoverall performance of each isolation
level under a variety of workloads. As the queries are very similar to those in the previous section that is,
the only difference is that each reader now does two consecuti®ELEC3 as opposed to oneand each witer
commits its transaction instead of abortingz and the performance differences in isolation levels are due to
the way thedifferent isolation levels handle locks agxplainedin Section 4.1theseresults will only be briefly
discussed.

As shown in [Figure 7], unrepeatable reads are only possible under th(READ_UNCOMMITTE&Nd
READ_COMMITTEBolation levels. At firstglance the results may seem abit surprising z although both
isolation levels do not prevent the anomaly from occurring, clearhREAD_COMMITTEDResults in fewer
anomalies. However, note that thiss likely because inREAD_UNCOMMITTEBven writes from transactions
that have not committed yet (e.g. still in progresswill be read by reader transactions, as opposed to in
READ_COMMITTERhere reader transactions will never do a read while another write transaction is acting
upon it, and will be blocked until a write is fully complete Thiscorrelatesto a higher likelihood that a reader
transaction will read some modified dataunder READ_UNCOMMITTED

Pagell

