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1.  INTRODUCTION 

The primary concern of this project is to empirically show the performance repercussions of choosing an 

isolation level in SQL Server 2008 R2 that constricts the level of concurrency more-so than necessary.  For 

example, in an application where no unrepeatable reads are possible in the first place, what are the penalties 

of choosing an isolation level of REPEATABLE_READ or higher?  While many sources stress that a 

ÔÒÁÎÓÁÃÔÉÏÎȭÓ ÉÓÏÌÁÔÉÏÎ level should be chosen with care due to possible performance degradation with 

concurrent transactions, it is not immediately clear whether this would result in a system that is marginally 

slower, or orders of magnitude slower in real world scenarios. 

In this vein, this project utilizes a simple database of tuples in SQL Server and a highly concurrent 

benchmarking application written in Java in an attempt to demonstrate the consequences of setting 

ȰÉÎÃÏÒÒÅÃÔȱ ÉÓÏÌÁÔÉÏÎ ÌÅÖÅÌÓ ÔÏ eliminate the read anomalies specified in SQL-92[1] .  As a side-effect of the 

results presented in this paper, we also show that snapshot isolation (i.e. multi-version concurrency control) 

performs admirably under many different scenarios ɀ sometimes as well as the lowest isolation level ɀ while 

still being able to eliminate most anomalies.   

2.  METHODOLOGY 

Since the goal of the project was to demonstrate the performance of the isolation levels offered in SQL Server 

2008 R2 under varying real world scenarios, there were five important aspects that were crucial during the 

creation of the experiment environment: 

1.) The benchmark application (i.e., the client) should utilize multithreading to emulate a large number 

of transactions being sent simultaneously to the server. 

2.) 4Ï ÅÎÓÕÒÅ ÔÈÅ ÉÎÔÅÇÒÉÔÙ ÏÆ ÔÈÅ ÓÔÕÄÙȭÓ ÒÅÓÕÌÔÓȟ ÔÈÅ ÂÅÎÃÈÍÁÒËÉÎÇ ÁÐÐÌÉÃÁÔÉÏÎ ÓÈÏÕÌÄ ÂÅ carefully 

engineered in such a way that a minimal amount of processing be done client-side during the 

benchmark. 

3.) The study should encompass all three major read-ÁÎÏÍÁÌÉÅÓ ÔÈÁÔ 31, 3ÅÒÖÅÒȭÓ ÆÉÖÅ ÉÓÏÌÁÔÉÏÎ ÌÅÖÅÌÓ 

seek to address ɀ specifically, Dirty Reads, Unrepeatable Reads, and Phantoms should be shown to be 

impossible under certain READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, 

SERIALIZABLE , and SNAPSHOT isolation levels.  This will  require after-benchmark analysis.  

4.) 4ÈÅ ÓÔÕÄÙ ÓÈÏÕÌÄ ÓÈÏ× ÔÈÅ ÓÅÒÖÅÒȭÓ ÐÅÒÆÏÒÍÁÎÃÅ ÕÎÄÅÒ a vast number of concurrent transactions 

varying from a simple single-threaded architecture (i.e. 1 transaction at a time) to as many 

concurrent transactions as the server will allow.  

5.) The study should utilize transactions that are somewhat realistic and should, at the very least, 

provide a range of different possible workloads for each transaction. 

After much deliberation, four parameters which would likely heavily influence the overall running time of a 

benchmark were defined as follows: 

1.)  The number of concurrent transactions. 

2.) 4ÈÅ ÄÉÓÔÒÉÂÕÔÉÏÎ ÏÆ ȰÒÅÁÄÅÒȱ ÔÒÁÎÓÁÃÔÉÏÎÓ ÖÅÒÓÕÓ Ȱ×ÒÉÔÅÒȱ ÔÒÁÎÓÁÃÔÉÏÎÓȢ 

3.) The complexity of each transaction ɀ more specifically, the complexity of each write  transaction. 

4.) The total number of transactions performed per benchmark. 

How all of these aspects were covered during the process of performing this study will now be discussed in 

the following two  subsections. 
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2.1  METHODOLOGY: CLIENT 

The benchmarking client is a Java (J2SE) application utilizing -ÉÃÒÏÓÏÆÔȭÓ JDBC driver[8]  to connect to the 

provided SQL Server 2008 R2 instance.  The client relies on JavaȭÓ ExecutorService [11]  API to create and 

maintain a thread pool consisting of X threads: each thread is a runnable  TransactionTask  object, 

which just sends a predefined SQL query to the server.  To satisfy the first requirement discussed previously, 

every TransactionTask  is initialized and set up prior to the start of the thread pool, and absolutely no 

additional work other than executing the already initialized query and ÓÔÏÒÉÎÇ ÔÈÅ ÑÕÅÒÙȭÓ ÒÅÓÕÌÔÓ ɉÉÆ 

applicable) is done while the thread pool is running. 

The client first initializes a predetermined number (1000 in benchmarks discussed in this paper) of 

TransactionTask  objects.  3ÉÎÃÅ ÔÈÅ ÂÅÎÃÈÍÁÒË ÒÅÌÉÅÓ ÏÎ Á ÍÉØÔÕÒÅ ÏÆ ȰÒÅÁÄÅÒȱ ÔÒÁÎÓÁÃÔÉÏÎÓ ÁÎÄ Ȱ×ÒÉÔÅÒÓȱ 

to show the anomalies in question, a weighted coin is flipped during the initialization of each 

TransactionTask , specifying whether it will eventually be sending a SELECT query or an UPDATE query to 

the server.   The client then adds all of these TransactionTask  objects to the ExecutorService Ωǎ thread 

pool, and starts the pool.  Each TransactionTask  that is currently in the thread pool is then executed, 

which results in queries being sent to the SQL Server database ɀ when a Tr ansact i onTask  in the pool is 

completed, another Tr ansact i onTask  enters the thread pool in its place.  The client then waits until all 

TransactionTask  objects are done executing, and afterwards analyses the results if requested by the user. 

High-level pseudocode descriptions of the client and each TransactionTask  are provided below: 

0  Client  

1 {  Initialize a thread pool of size X threads ï X is the number of concurrent xacts.  

2  Create an array of Tr ansactionTask objects of size Y called Tasks.  This is the total #  

   of xacts performed in the benchmark.  

3  Initialize all objects in Tasks  by flipping a weighted coin and assigning it  

   either a ñselectò query or ñupdateò query. 

4  Initialize the thread pool.  

5  START the benchmark timer.  

6  Add all TransactionTasks in Tasks into the thread pool, executing them automatically.  

7  SLEEP until all TransactionTasks are completed .  

8  STOP the benchmark timer.  

9  Analyze resu lts of each TransacionTask (if specified to do so by the user ).  

10 }  

0  TransactionTask (on thread execution)  

1 {  Create a new connection to the DB.  

2  Execute SQL query(or queries) defined by client during initialization.  

3  Store query results into self, if the query is a SELECT query.  

4  Close connection to the DB.  

5 }  

6 TransactionTask (on results analysis)  

7 {  Analyse results depending on read anomaly requested.  

8 }  

 

 

Of course, there is additional code written in the client to automate the collection of benchmark results (e.g. 

automating the number of iterations performed, the number of concurrent transactions, etc.).  Furthermore, 

the definition of each SQL query in a TransactionTask  depends on the type of anomaly being tested.  The 

SQL queries are described in further detail  in the following database methodology section.  
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2.2  METHODOLOGY: DATABASE 

The ÅØÐÅÒÉÍÅÎÔȭÓ SQL Server database consists of a simple table Ȱ%ØÐÅÒÉÍÅÎÔȱ consisting of 1000 tuples.  

%ÁÃÈ ÔÕÐÌÅ ÃÏÎÔÁÉÎÓ ÆÉÅÌÄÓ Ȱ)$ȱ ÁÎÄ Ȱ6ÁÌÕÅȱȟ ×ÈÅÒÅ Ȱ)$ȱ ÉÓ ÁÎ ÉÎÄÅØÅÄ ÕÎÉÑÕÅ ËÅÙȢ  Prior to each benchmark, 

the table is prepared such that there are exactly 1000 rows, ×ÉÔÈ ÅÁÃÈ Ȱ)$ȱ ÒÁÎÇÉÎÇ ÆÒÏÍ ρ ÔÏ ρπππȟ and every 

ȰValueȱ field set to 0. 

Since the actual workload per benchmark needs to vary from instance to instance for result gathering 

purposes, this is accomplished by requesting writer transactions to update or insert a prespecified number of 

random rows.  0ÒÉÏÒ ÔÏ ÔÈÅ ÔÒÁÎÓÁÃÔÉÏÎÓȭ ÅØÅÃÕÔÉÏÎȟ ÔÈÅÓÅ ÑÕÅÒÙ ÓÔÁÔÅÍÅÎÔÓ ÁÒÅ ÐÒÅÃÏÍÐÉÌÅÄ ÂÙ ÔÈÅ ÃÌÉÅÎÔȠ ÔÈÉÓ 

is to offload processing done during the actual benchmark.  As such, the random rows that each 

Transac t ionTask  writer is meant to update are decided prior to the benchmark.  The number of random 

rows that are updated is equivalent to the parameter ὼὥὧὸᾧέάὴὰὩὼὭὸώ (πЅὼὥὧὸᾧέάὴὰὩὼὭὸώЅρ) multiplied 

by the number of rows in the table. 

Dirty Read  

Reader TransactionTask Writer TransactionTask 

1  BEGIN TRANSACTION 
2  SET ISOLATION LEVEL 
3  Results = SELECT Value FROM Experiment 
4  END TRANSACTION 
 

1  BEGIN TRANSACTION 
2  SET ISOLATION LEVEL 
3  UPDATE Experiment SET Value=1 WHERE    
    ID=RANDOM_ID1, ID=RANDOM_ID2,  
    L5Ґw!b5haψL5оΣ Χ 
4  ABORT 
5  END TRANSACTION 

Table 1:  SQL Queries used to demonstrate Ȱ$ÉÒÔÙ 2ÅÁÄȱ ÁÎÏÍÁÌÉÅÓȢ 

 

!Ó ÁÌÌ Ȱ6ÁÌÕÅȱ ÆÉÅÌÄÓ ÉÎ ÔÈÅ %ØÐÅÒÉÍÅÎÔ ÔÁÂÌÅ ÁÒÅ ÓÅÔ ÔÏ π ÉÎÉÔÉÁÌÌÙȟ ÄÅÔÅÒÍÉÎÉÎÇ ÔÈÅ ÎÕÍÂÅÒ ÏÆ ÄÉÒÔÙ ÒÅÁÄÓ ÉÓ 

trivial:  since all updates are aborted, each TransactionTask only needs to go through Ȱ2ÅÓÕÌÔÓȱ and tabulate 

values that are equal to 1, as any value not equal to 0 infers a dirty read. 

 

Unrepeatable Read  

Reader TransactionTask Writer TransactionTask 

1  BEGIN TRANSACTION 
2  SET ISOLATION LEVEL 
3  Results1 = SELECT Value FROM Experiment 
4  Results2 = SELECT Value FROM Experiment 
5  END TRANSACTION  

1  BEGIN TRANSACTION 
2  SET ISOLATION LEVEL 
3  UPDATE Experiment SET Value=1 WHERE    
    ID=RANDOM_ID1, ID=RANDOM_ID2,  
    L5Ґw!b5haψL5оΣ Χ 
4  COMMIT 
5  END TRANSACTION 

Table 2:  SQL Queries used to demonstrate Ȱ5ÎÒÅÐÅÁÔÁÂÌÅ 2ÅÁÄȱ ÁÎÏÍÁÌÉÅÓȢ 

 

Again, determining whether a reader TransactionTask has experienced an unrepeatable read is trivial:  it only 

needs to check if any values for a corresponding row in Result1 are different than that in Results2. 
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Phantoms  

When trying to demonstrate phantom anomalies, each writer needs to prune the database back to the initial 

ρπππ ÔÕÐÌÅÓ ÂÅÆÏÒÅ ÉÎÓÅÒÔÉÎÇ Á ÒÁÎÄÏÍ ÎÕÍÂÅÒ ÏÆ ÒÏ×Ó ÔÏ ÔÈÅ ÔÁÂÌÅȠ ÏÔÈÅÒ×ÉÓÅȟ ÉÆ ÔÈÅ ÔÁÂÌÅ ÉÓÎȭÔ ÐÒÕÎÅÄȟ ÉÔ ÍÁÙ 

grow exceptionally large over time and skew results gathered from transactions that are executed last. 

The number of rows inserted into the table during each TransactionTask is determined, as before, by the 

ὼὥὧὸᾧέάὴὰὩὼὭὸώ user parameter. 

Reader TransactionTask Writer TransactionTask 

1  BEGIN TRANSACTION 
2  SET ISOLATION LEVEL 
3  Results1 = SELECT Value FROM Experiment 
4  Results2 = SELECT Value FROM Experiment 
5  END TRANSACTION  

1  BEGIN TRANSACTION 
2  SET ISOLATION LEVEL 
3  DELETE FROM Experiment WHERE ID>1000 
4  INSERT INTO Experiment (Value) VALUES    
    όмύΣ όмύΣ Χ Σ όмύ 
5  COMMIT 
6  END TRANSACTION 

Table 3:  SQL Queries used to demonstrate άtƘŀƴǘƻƳέ ŀƴƻƳŀƭƛŜǎΦ 

$ÅÔÅÒÍÉÎÉÎÇ ×ÈÅÔÈÅÒ Á ÐÈÁÎÔÏÍ ÁÎÏÍÁÌÙ ÈÁÓ ÏÃÃÕÒÒÅÄ ÄÕÒÉÎÇ Á ÒÅÁÄÅÒ 4ÒÁÎÓÁÃÔÉÏÎ4ÁÓËȭÓ execution is a bit 

trickier  to do efficiently:  note that if the number of returned entries in Results1 and Results2 differ, then 

surely a phantom has occurred.  However, if the number of entries in Results1 and Results2 are the same, this 

ÄÏÅÓÎȭÔ ÎÅÃÅÓÓÁrily mean that a phantom hasnȭt occurred: observe the scenario where 2 rows are deleted and 

2 new rows are inserted ɀ although the number of rows are unchanged, the rows themselves have.  Thus, if 

the size of Results1 and Results2 is the same, it is necessary to scan through all items in Results1 to ensure 

that every row that exists in Results1 also exists in Results2. 

3.  CHALLENGES 

Although theoretically the study should be rather simple to implement and execute, in reality there were 

many challenges that were encountered during the process of conducting this study.  Unfortunately, since the 

SQL Server instance is provided by CSIL, it is not entirely clear whether the issues faced are due to the 

ÓÅÒÖÅÒȭÓ ÃÏÎÆÉÇÕÒÁÔÉÏÎ ÏÒ ÄÕÅ ÔÏ Á ÄÅÅÐÅÒ ÕÎÄÅÒÌÙÉÎÇ ÐÒÏÂÌÅÍ ×ÉÔÈ 31, 3ÅÒÖÅÒ ɀ although the latter seems 

unlikely as SQL Server is a commercial, widely adopted enterprise application. 

The most notable problem faced was that the provided SQL Server instance has severe issues in dealing with 

a large number of concurrent transactions; while the client (which was run on a crippled virtual machine, 

again provided by CSIL) was able to handle up to 2000 threads with ease, any benchmark that tried to send 

more than 500 concurrent transactions to the database would result in a cryptic SQL exception being thrown: 

ȰTransaction X (Process ID X) was deadlocked on lock resources with another process and has been 

ÃÈÏÓÅÎ ÁÓ ÔÈÅ ÄÅÁÄÌÏÃË ÖÉÃÔÉÍȢ 2ÅÒÕÎ ÔÈÅ ÔÒÁÎÓÁÃÔÉÏÎȱ 

When this exception is thrown, all active transactions immediately throw the same exception repeatedly.  

Similarly, the database grinds to a halt:  the activity monitor in SQL Server Management Studio becomes 

unresponsive and self terminates, and reconnection attempts fail.  Initially, my interpretation of this error 

was that a deadlock was occurring due to the semantics of the transaction itself; that is, a transaction with a 

lock on row X may have requested, say, a row lock on row Y, while another transaction holding a row lock on 

row Y may be requesting a lock on row X, resulting in a deadlock.  However, after much experimentation ɀ 
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eventually even disabling the use of locks with the NOLOCK SQL query hint ɀ the exception still surfaced even 

with  the simplest of transactions.   

After much research and troubleshooting, the documentation for the exception was examined more 

carefully[9]  ɀ ÉÔ ÓÅÅÍÅÄ ÔÈÁÔ ÔÈÅ ÅØÃÅÐÔÉÏÎ ×ÁÓ Á ȰÃÁÔÃÈ-ÁÌÌȱ ÅØÃÅÐÔÉÏÎ ÏÎ all  resources that can deadlock.  

Most notably, the same exception is thrown regardless of whether the system is deadlocked due to locks 

(which is resolved rather quickly by SQL Server) or if the deadlock is due to more complex resources such as 

a lack of available memory or process worker threads (which, for obvious reasons, takes much longer to 

resolve).  Surely enough, the activity monitor in SQL Server Management Studio, when filtered properly, 

showed that the deadlock resource in question was related to the number of available threads [Figure 1] .   

Figure 1:  Server deadlock due to exhausted resources shown via SQL Server Management Studio. 

To confirm this hypothesis, a deadlock trace was conducted via SQL Server Profiler, which resulted in the 

deadlock graph shown in [Figure 2 ] .  The graph shows a singular victim process being deadlocked due to a 

thread pool, attached to hundreds of other processes.  

 
Figure 2:  Server deadlock due to exhausted resources, shown via deadlock graph from SQL Server Profiler. 

Another problem arose while trying to gather results from the benchmarking client:  as the client was run on 

a virtual machine provided by CSIL, the results generated were prone to severe fluctuations.  An attempt to 

mitigate these fluctuations is shown in the Results section of this paper ɀ each singular benchmark would be 
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run numerous times, and an average value would be used instead of a singular result.   However, this is only a 

quick fix to address a more serious underlying issue with the experiment environment. 

The cause of these fluctuations seems to be caused by the lack of available system resources on the virtual 

machine.  When the client is running a benchmark with a moderate number of concurrent transactions (e.g. 

around 300), the CPU usage on the system is fully saturated ɀ however, Java.exe only utilizes around 60% of 

the CPU, and the remaining cycles are consumed by sqlservr.exe, which implies that both the benchmarking 

client and SQL Server instance (or a large component thereof) are running on the same virtual machine.  As 

well, due to the low system resources available to the client, each benchmark would take many hours to 

ÃÏÍÐÌÅÔÅ ɉÔÈÅ ȬÈÅÁÖÙ ×ÏÒËÌÏÁÄȭ ÂÅÎÃÈÍÁÒËÓ ÔÏÏË ÕÐ×ÁÒÄÓ ÏÆ ρς ÈÏÕÒÓ ÔÏ ÃÏÍÐÌÅÔÅ on average), and any 

other application running on the same machine would easily influence the test results.  Ideally, a dedicated 

box should be used for the client, but unfortunately this was not available, even after explicitly requesting so. 

While these configurations lead to less-than-ideal experimental conditions, the results gathered do seem to 

indicate a trend that is consistent among several different benchmarks.  Fortunately, the Java code written for 

this experiment (and subsequent graphs) can be easily be conducted on a more stable system if the need 

arises to confirm the findings in this paper. 

 

4.  RESULTS AND DISCUSSION 

As discussed in the Section 2 previously, there were four parameters defined that may influence the time it 

takes for each benchmark to complete: the number of concurrent transactions (num_xact), the distribution of 

reader and writer transactions (reader_dist), the complexity of each update transaction (num_complexity), 

and the number of overall transactions performed (num_tasks).   

For each anomaly being tested, five isolation levels are benchmarked with varying numbers of concurrent 

ÔÒÁÎÓÁÃÔÉÏÎÓȢ  4ÈÅ 31, ÑÕÅÒÉÅÓ ÕÓÅÄ ÄÕÒÉÎÇ ÅÁÃÈ ÁÎÏÍÁÌÙ ÔÅÓÔ ÉÓ ÄÅÆÉÎÅÄ ÉÎ ÔÈÅ ÐÒÅÖÉÏÕÓ Ȱ-ÅÔÈÏÄÏÌÏÇÙȱ 

section.  To gather meaningful results from each isolation level benchmark and to eliminate outliers, each 

benchmark is iterated 20 times, and the results are denoted as singular points on a graph.  A 6th degree 

polynomial curve is used as the best-fit  for these points to facilitate readability. 

Of note, however, is that the overall number of transactions performed in these benchmarks is fixed to be 

1000, as increasing this number serves no benefit other than increasing the accuracy of the results ɀ 

something that is already ensured by running the benchmarks multiple times in succession.   

 

4.1  DIRTY READ SCENARIO BENCHMARK 

A dirty read is defined as a transaction that reads changes made by another transaction that has not yet been 

committed.  First, to confirm that dirty reads cannot occur in isolation levels higher than 

READ_UNCOMMITTED as stated in [7] , a simple benchmark utilizing queries from [Table 1]  which varies the 

number of concurrent transactions from 1 to 401 in steps of 10 is performed, The results are shown in 

[Figure  3].   
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Figure 3:  &ÒÅÑÕÅÎÃÙ ÏÆ ÔÈÅ Ȱ$ÉÒÔÙ 2ÅÁÄȱ ÁÎÏÍÁÌÉÅÓ ÏÃÃÕÒÒÉÎÇ ÕÎÄÅÒ ÖÁÒious isolation levels. 

As clearly shown, dirty reads occur more frequently as the number of concurrent transactions increase, and 

only under READ_UNCOMMITTED; that is, choosing an isolation level higher than READ_COMMITTED serves 

no additional benefit in eliminating dirty reads.  To illustrate the performance degradation from choosing an 

isolation level higher than READ_COMMITTED, a low writer  complexity benchmark is performed and its 

results are shown in [Figure 4] . 

 

Figure 4:  Performance of different isolation levels ×ÉÔÈ Ȱ$ÉÒÔÙ 2ÅÁÄȱ ÓÃÅÎÁÒÉÏ transactions ɀ low workload. 

[Figure 4]  shows a significant performance penalty (ЂσφϷ slower than READ_COMMITTED with  400 

concurrent transactions) when using either REPEATABLE_READ or SERIALIZABLE to eliminate the anomaly.  

This is likely due to the way locks are handled under these isolation levels:  in REPEATABLE_READ and 
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SERIALIZABLE, all S- and X-locks are held until the end of a transaction, whereas in READ_COMMITTED these 

locks can be released at any time during a transaction, allowing for increased concurrency.   

For example, ÔÈÅ ȰSELECT 6ÁÌÕÅȱ ÒÅÁÄÅÒ ÑÕÅÒÙ ×ÉÌÌ ÂÅ ÁÂÌÅ ÔÏ ÒÅÌÉÎÑÕÉÓÈ ÌÏÃËÓ ÁÆÔÅÒ analyzing each row in 

READ_COMMITTED, allowing concurrent write transactions to write to the row even when the transaction is 

not completely finished.  However, in REPEATABLE_READ/ SERIALIZABLE, the reader transaction must hold 

the lock for all rows until it i s finished with the transaction, meaning that all concurrent write transactions 

are blocked until the entire reader transaction is completed.  Do note that this clearly means 

REPEATABLE_READs are very possible under READ_COMMITTED ɀ if a writer updates a row and commits 

ÁÆÔÅÒ ÔÈÅ ÒÏ×ȭÓ ÌÏÃË ÉÓ ÒÅÌÅÁÓÅÄ ÂÙ Á ÒÅÁÄÅÒ transaction, the reader will read a different value for that row if 

the same query is executed again. 

What is surprising, however, is that SNAPSHOT_ISOLATION actually results in better performance than 

READ_COMMITTED while still being able to prevent dirty reads from occurring ɀ and as shown in later 

sections, is also capable of preventing many other anomalies efficiently.  This will turn out to be a continuing 

trend with multi -version concurrency control. 

 

Figure 5:  Performance of isolation levels with Ȱ$ÉÒÔÙ 2ÅÁÄȱ ÓÃÅÎÁÒÉÏ ÔÒÁÎÓÁÃÔÉÏÎÓ ɀ medium workload. 

For completeness, [Figure 5]  shows the same benchmark, but with a higher workload per writer transaction 

(each transaction updates 20 rows as opposed to 3 rows previously); both REPEATABLE_READ and 

SERIALIZABLE take almost 44% longer to complete the benchmark than SNAPSHOT_ISOLATION.  These 

results are similar to those from [Figure 4] .  However, if the workload is increased even further ɀ that is, each 

writer updates to 20% of all available entries in the table) ɀ the difference between isolation levels 

diminishes, as shown in [Figure 6] .  This is likely because as the number of row updates increases per 

transaction, so do the number of blocked transactions due to X-locks being held (i.e. write/write conflicts) ɀ 

thus, the performance penalty from these blocked transactions start dominating the performance 

improvements given by simply improving read/write concurrency  in READ_COMMITTED and 

REPEATABLE_READ.   
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Figure 6:  0ÅÒÆÏÒÍÁÎÃÅ ÏÆ ÄÉÆÆÅÒÅÎÔ ÉÓÏÌÁÔÉÏÎ ÌÅÖÅÌÓ ×ÉÔÈ Ȱ$ÉÒÔÙ 2ÅÁÄȱ ÓÃÅÎÁÒÉÏ ÔÒÁÎÓÁÃÔÉÏÎÓ ɀ high workload. 

These figures also highlight an important point:  while initially increasing the number of concurrent 

transactions (e.g. from 1 transaction to 40 concurrent transactions) does speed up the time it takes to 

complete the benchmark, increasing it any further beyond a specific point actually results in gradually worse 

performance. 

 

4.2  UNREPEATABLE READ SCENARIO BENCHMARK 

Similar to the benchmarks for the dirty read scenario, this section shows that unrepeatable read anomalies 

can occur in isolation levels lower than REPEATABLE_READ, and the overall performance of each isolation 

level under a variety of workloads.  As the queries are very similar to those in the previous section ɀ that is, 

the only difference is that each reader now does two consecutive SELECTs as opposed to one, and each writer 

commits its transaction instead of aborting ɀ and the performance differences in isolation levels are due to 

the way the different  isolation levels handle locks as explained in Section 4.1, these results will only be briefly 

discussed. 

As shown in [Figure 7] , unrepeatable reads are only possible under the READ_UNCOMMITTED and 

READ_COMMITTED isolation levels.  At first glance, the results may seem a bit surprising ɀ although both 

isolation levels do not prevent the anomaly from occurring, clearly READ_COMMITTED results in fewer 

anomalies.  However, note that this is likely because in READ_UNCOMMITTED, even writes from transactions 

that have not committed yet (e.g. still in progress) will be read by reader transactions, as opposed to in 

READ_COMMITTED where reader transactions will never do a read while another write transaction is acting 

upon it, and will be blocked until a write is fully complete.  This correlates to a higher likelihood that a reader 

transaction will read some modified data under READ_UNCOMMITTED. 


